
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3000546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The modulation of <scp>ethaneâ€selective</scp> adsorption performance in series of bimetal <scp>PCN</scp> â€250 metal–organic frameworks: Impact of metal composition. AICHE Journal, 2022, 68, e17385.	1.8	11
2	Machine learning and in-silico screening of metal–organic frameworks for O2/N2 dynamic adsorption and separation. Chemical Engineering Journal, 2022, 427, 131604.	6.6	42
3	Recent advances in adsorptive separation of ethane and ethylene by C2H6-selective MOFs and other adsorbents. Chemical Engineering Journal, 2022, 431, 133208.	6.6	58
4	Separation of propylene and propane with pillar-layer metal–organic frameworks by exploiting thermodynamic-kinetic synergetic effect. Chemical Engineering Journal, 2022, 431, 133284.	6.6	7
5	Mechanochemical synthesis of a robust cobalt-based metal–organic framework for adsorption separation methane from nitrogen. Chemical Engineering Journal, 2022, 435, 133876.	6.6	5
6	Machine Learning-Assisted Computational Screening of Metal-Organic Frameworks for Atmospheric Water Harvesting. Nanomaterials, 2022, 12, 159.	1.9	6
7	Robust Nickel-Based Metal–Organic Framework for Highly Efficient Methane Purification and Capture. ACS Applied Materials & Interfaces, 2022, 14, 4242-4250.	4.0	17
8	A Microporous Metal–Organic Framework Incorporating Both Primary and Secondary Building Units for Splitting Alkane Isomers. Journal of the American Chemical Society, 2022, 144, 3766-3770.	6.6	36
9	Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature, 2022, 602, 606-611.	13.7	60
10	Molecular-fingerprint machine-learning-assisted design and prediction for high-performance MOFs for capture of NMHCs from air. , 2022, 1, 100026.		18
11	A new yttriumâ€based metal–organic framework for molecular sieving of propane from propylene with high propylene capacity. AICHE Journal, 2022, 68, .	1.8	17
12	Novel Granular Biomass-Based Carbons with Excellent C ₂ H ₆ /CH ₄ Selectivity for Recovering Light Hydrocarbons from Natural Gas. ACS Sustainable Chemistry and Engineering, 2022, 10, 5633-5642.	3.2	9
13	Selective, Stable Production of Ethylene Using a Pulsed Cu-Based Electrode. ACS Applied Materials & Interfaces, 2022, 14, 19388-19396.	4.0	14
14	A cobaltâ€based metal–organic framework for efficient separation of propene from propane via electrostatic effect. AICHE Journal, 2022, 68, .	1.8	6
15	Machine-Learning-Assisted High-Throughput computational screening of Metal–Organic framework membranes for hydrogen separation. Chemical Engineering Journal, 2022, 446, 136783.	6.6	27
16	Large-Scale Screening and Machine Learning for Metal–Organic Framework Membranes to Capture CO2 from Flue Gas. Membranes, 2022, 12, 700.	1.4	5
17	Machine learning and high-throughput computational screening of hydrophobic metal–organic frameworks for capture of formaldehyde from air. Green Energy and Environment, 2021, 6, 759-770.	4.7	35
18	Chiral metal-organic frameworks with tunable catalytic selectivity in asymmetric transfer hydrogenation reactions. Nano Research, 2021, 14, 466-472.	5.8	34

#	Article	IF	CITATIONS
19	Implanting polyethylene glycol into MIL-101(Cr) as hydrophobic barrier for enhancing toluene adsorption under highly humid environment. Chemical Engineering Journal, 2021, 404, 126562.	6.6	55
20	A Ni-based metal-organic framework with super-high C3H8 uptake for adsorptive separation of light alkanes. Separation and Purification Technology, 2021, 266, 118198.	3.9	18
21	Techno-economic analysis of metal–organic frameworks for adsorption heat pumps/chillers: from directional computational screening, machine learning to experiment. Journal of Materials Chemistry A, 2021, 9, 7656-7666.	5.2	20
22	Preferential adsorption of ethane over ethylene on a Zr-based metal–organic framework: impacts of C–Hâ∢N hydrogen bonding. New Journal of Chemistry, 2021, 45, 8045-8053.	1.4	16
23	Insights into the Structure–Activity Relationship in Aerobic Alcohol Oxidation over a Metal–Organic-Framework-Supported Molybdenum(VI) Catalyst. Journal of the American Chemical Society, 2021, 143, 4302-4310.	6.6	48
24	Kinome profiling analysis identified Src pathway as a novel therapeutic target in combination with histone deacetylase inhibitors for cutaneous T-cell lymphoma. Journal of Dermatological Science, 2021, 101, 194-201.	1.0	4
25	Tuning the Structural Flexibility for Multi-Responsive Gas Sorption in Isonicotinate-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 16820-16827.	4.0	31
26	Metal–Organic Frameworks for Xylene Separation: From Computational Screening to Machine Learning. Journal of Physical Chemistry C, 2021, 125, 7839-7848.	1.5	25
27	Solutionâ€Processable Metal–Organic Framework Nanosheets with Variable Functionalities. Advanced Materials, 2021, 33, e2101257.	11.1	33
28	Adsorption behavior of metal-organic frameworks: From single simulation, high-throughput computational screening to machine learning. Computational Materials Science, 2021, 193, 110383.	1.4	20
29	Molecular fingerprint and machine learning to accelerate design of <scp>highâ€performance</scp> homochiral metal–organic frameworks. AICHE Journal, 2021, 67, e17352.	1.8	15
30	Metalâ€Organic Frameworks: Solutionâ€Processable Metal–Organic Framework Nanosheets with Variable Functionalities (Adv. Mater. 29/2021). Advanced Materials, 2021, 33, 2170228.	11.1	2
31	Predicting adsorption and separation performance indicators of Xe/Kr in metal-organic frameworks via a precursor-based neural network model. Chemical Engineering Science, 2021, 243, 116772.	1.9	6
32	Highly Efficient Capture of Postcombustion Generated CO ₂ through a Copper-Based Metal–Organic Framework. Energy & Fuels, 2021, 35, 610-617.	2.5	14
33	Pore Distortion in a Metal–Organic Framework for Regulated Separation of Propane and Propylene. Journal of the American Chemical Society, 2021, 143, 19300-19305.	6.6	72
34	Efficient adsorptive separation of propene over propane through a pillarâ€layer cobaltâ€based metal–organic framework. AICHE Journal, 2020, 66, e16858.	1.8	34
35	Selfâ€Assembly of Highly Stable Zirconium(IV) Coordination Cages with Aggregation Induced Emission Molecular Rotors for Liveâ€Cell Imaging. Angewandte Chemie, 2020, 132, 10237-10245.	1.6	19
36	Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: Insights from GCMC simulations and the ideal adsorbed solution theory (IAST). Chemical Engineering Journal, 2020, 386, 123945.	6.6	39

#	Article	IF	CITATIONS
37	Selfâ€Assembly of Highly Stable Zirconium(IV) Coordination Cages with Aggregation Induced Emission Molecular Rotors for Liveâ€Cell Imaging. Angewandte Chemie - International Edition, 2020, 59, 10151-10159.	7.2	99
38	Machine learning and in silico discovery of metal-organic frameworks: Methanol as a working fluid in adsorption-driven heat pumps and chillers. Chemical Engineering Science, 2020, 214, 115430.	1.9	43
39	Highly rapid mechanochemical synthesis of a pillar-layer metal-organic framework for efficient CH4/N2 separation. Chemical Engineering Journal, 2020, 385, 123836.	6.6	49
40	Tuning the Atrazine Binding Sites in an Indium-Based Flexible Metal–Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 44762-44768.	4.0	11
41	Structural Diversity of Zirconium Metal–Organic Frameworks and Effect on Adsorption of Toxic Chemicals. Journal of the American Chemical Society, 2020, 142, 21428-21438.	6.6	95
42	Molecular Understanding and Design of Porous Polyurethane Hydrogels with Ultralow-Oil-Adhesion for Oil–Water Separation. ACS Applied Materials & Interfaces, 2020, 12, 56530-56540.	4.0	27
43	Improving <scp>CH₄</scp> N ₂ selectivity within isomeric Alâ€based MOFs for the highly selective capture of coalâ€mine methane. AICHE Journal, 2020, 66, e16287.	1.8	42
44	Selective extraction of methane from C1/C2/C3 on moisture-resistant MIL-142A with interpenetrated networks. Chemical Engineering Journal, 2020, 395, 125057.	6.6	36
45	Room-Temperature Synthesis of Pyr _{1/3} @Cu–BTC with Enhanced Stability and Its Excellent Performance for Separation of Propylene/Propane. Industrial & Engineering Chemistry Research, 2020, 59, 6202-6209.	1.8	12
46	Synthesis and Adsorption Performance of Ag/γ-Al ₂ O ₃ with High Adsorption Capacities for Dibenzyl Disulfide. Industrial & Engineering Chemistry Research, 2020, 59, 6164-6171.	1.8	6
47	Fe-Encapsulated ZSM-5 Zeolite with Nanosheet-Assembled Structure for the Selective Catalytic Reduction of NO <i>_x</i> with NH ₃ . Industrial & Engineering Chemistry Research, 2020, 59, 8592-8600.	1.8	11
48	Machine-learning-assisted high-throughput computational screening of high performance metal–organic frameworks. Molecular Systems Design and Engineering, 2020, 5, 725-742.	1.7	74
49	Large-Scale Screening and Machine Learning to Predict the Computation-Ready, Experimental Metal-Organic Frameworks for CO2 Capture from Air. Applied Sciences (Switzerland), 2020, 10, 569.	1.3	41
50	Machine Learning and High-throughput Computational Screening of Metal-organic Framework for Separation of Methane/ethane/propane. Acta Chimica Sinica, 2020, 78, 427.	0.5	14
51	Study of Corrosive Sulfur Adsorption by Modified \$gamma-ext{Al}_{2}mathrm{O}_{3}\$. , 2020, , .		0
52	Functional UiO-66 for the removal of sulfur-containing compounds in gas and liquid mixtures: A molecular simulation study. Chemical Engineering Journal, 2019, 356, 737-745.	6.6	15
53	Ultrahigh CO2/CH4 and CO2/N2 adsorption selectivities on a cost-effectively L-aspartic acid based metal-organic framework. Chemical Engineering Journal, 2019, 375, 122074.	6.6	50
54	Novel Hierarchical Fe(III)-Doped Cu-MOFs With Enhanced Adsorption of Benzene Vapor. Frontiers in Chemistry, 2019, 7, 652.	1.8	25

#	Article	IF	CITATIONS
55	Computational Screening of Metal–Organic Framework Membranes for the Separation of 15 Gas Mixtures. Nanomaterials, 2019, 9, 467.	1.9	28
56	Combining large-scale screening and machine learning to predict the metal-organic frameworks for organosulfurs removal from high-sour natural gas. APL Materials, 2019, 7, .	2.2	22
57	Zirconium-Based Metal–Organic Framework with 9-Connected Nodes for Ammonia Capture. ACS Applied Nano Materials, 2019, 2, 6098-6102.	2.4	59
58	Rapid room temperature conversion of hydroxy double salt to MOF-505 for CO ₂ capture. CrystEngComm, 2019, 21, 165-171.	1.3	13
59	Encapsulation and Protection of Ultrathin Two-Dimensional Porous Organic Nanosheets within Biocompatible Metal–Organic Frameworks for Live-Cell Imaging. Chemistry of Materials, 2019, 31, 4897-4912.	3.2	23
60	Ethane-Selective Behavior Achieved on a Nickel-Based Metal–Organic Framework: Impact of Pore Effect and Hydrogen Bonds. Industrial & Engineering Chemistry Research, 2019, 58, 10516-10523.	1.8	15
61	Amino Acid Imprinted UiO-66s for Highly Recognized Adsorption of Small Angiotensin-Converting-Enzyme-Inhibitory Peptides. ACS Applied Materials & Interfaces, 2019, 11, 23039-23049.	4.0	30
62	Moisture stability of ethaneâ€selective Ni(II), Fe(III), Zr(IV)â€based metal–organic frameworks. AICHE Journal, 2019, 65, e16616.	1.8	28
63	Identifying the best metal–organic frameworks and unravelling different mechanisms for the separation of pentane isomers. Molecular Systems Design and Engineering, 2019, 4, 609-615.	1.7	8
64	Cerium Doped Pt/TiO2 for Catalytic Oxidation of Low Concentration Formaldehyde at Room Temperature. Catalysis Letters, 2019, 149, 1319-1325.	1.4	15
65	Development of Iron Encapsulated Hollow Beta Zeolites for Ammonia Selective Catalytic Reduction. Industrial & Engineering Chemistry Research, 2019, 58, 2914-2923.	1.8	10
66	Establishment and characterization of a novel dedifferentiated chondrosarcoma cell line, NCC-dCS1-C1. Human Cell, 2019, 32, 202-213.	1.2	7
67	A new anti-biofilm strategy of enabling arbitrary surfaces of materials and devices with robust bacterial anti-adhesion <i>via</i> a spraying modified microsphere method. Journal of Materials Chemistry A, 2019, 7, 26039-26052.	5.2	134
68	Superoxide Decay Pathways in Oxygen Reduction Reaction on Carbonâ€Based Catalysts Evidenced by Theoretical Calculations. ChemSusChem, 2019, 12, 1133-1138.	3.6	13
69	An indium-based ethane-trapping MOF for efficient selective separation of C2H6/C2H4 mixture. Separation and Purification Technology, 2019, 212, 51-56.	3.9	49
70	Mn ₃ O ₄ @C Nanoparticles Supported on Porous Carbon as Bifunctional Oxygen Electrodes and their Electrocatalytic Mechanism. ChemElectroChem, 2019, 6, 359-368.	1.7	32
71	Novel glucosamine-based carbon adsorbents with high capacity and its enhanced mechanism of preferential adsorption of C2H6 over C2H4. Chemical Engineering Journal, 2019, 358, 1114-1125.	6.6	48
72	Hydrophobic Shielding of Outer Surface: Enhancing the Chemical Stability of Metal–Organic Polyhedra. Angewandte Chemie, 2019, 131, 1053-1057.	1.6	8

#	Article	IF	CITATIONS
73	Hydrophobic Shielding of Outer Surface: Enhancing the Chemical Stability of Metal–Organic Polyhedra. Angewandte Chemie - International Edition, 2019, 58, 1041-1045.	7.2	45
74	Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & amp; Interfaces, 2018, 10, 8366-8373.	4.0	112
75	Iron-Based Metal–Organic Framework with Hydrophobic Quadrilateral Channels for Highly Selective Separation of Hexane Isomers. ACS Applied Materials & Interfaces, 2018, 10, 6031-6038.	4.0	43
76	Liquid-Assisted Mechanochemical Synthesis of Copper Based MOF-505 for the Separation of CO ₂ over CH ₄ or N ₂ . Industrial & Engineering Chemistry Research, 2018, 57, 703-709.	1.8	78
77	High-throughput computational screening of metal-organic framework membranes for upgrading of natural gas. Journal of Membrane Science, 2018, 551, 47-54.	4.1	73
78	Protein Translocation through a MoS ₂ Nanopore:A Molecular Dynamics Study. Journal of Physical Chemistry C, 2018, 122, 2070-2080.	1.5	45
79	Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nature Communications, 2018, 9, 1745.	5.8	251
80	Highly Adsorptive Separation of Ethane/Ethylene by An Ethane-Selective MOF MIL-142A. Industrial & Engineering Chemistry Research, 2018, 57, 4063-4069.	1.8	88
81	An ethane-trapping MOF PCN-250 for highly selective adsorption of ethane over ethylene. Chemical Engineering Science, 2018, 175, 110-117.	1.9	177
82	Molecular simulation study of wet flue gas adsorption on zeolite 13X. Microporous and Mesoporous Materials, 2018, 261, 181-197.	2.2	44
83	Design and self-assembly of hexahedral coordination cages for cascade reactions. Nature Communications, 2018, 9, 4423.	5.8	85
84	Unusual Moisture-Enhanced CO ₂ Capture within Microporous PCN-250 Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 38638-38647.	4.0	57
85	Pazopanib-induced changes in protein expression signatures of extracellular vesicles in synovial sarcoma. Biochemical and Biophysical Research Communications, 2018, 506, 723-730.	1.0	2
86	A novel fructose-based adsorbent with high capacity and its ethane-selective adsorption property. Journal of Solid State Chemistry, 2018, 268, 190-197.	1.4	12
87	Computational screening of hydrophobic metal–organic frameworks for the separation of H ₂ S and CO ₂ from natural gas. Journal of Materials Chemistry A, 2018, 6, 18898-18905.	5.2	84
88	Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry A, 2018, 6, 11734-11742.	5.2	96
89	Establishment and characterization of novel patient-derived osteosarcoma xenograft and cell line. In Vitro Cellular and Developmental Biology - Animal, 2018, 54, 528-536.	0.7	14
90	Highly selective adsorption separation of light hydrocarbons with a porphyrinic zirconium metal-organic framework PCN-224. Separation and Purification Technology, 2018, 207, 262-268.	3.9	67

#	Article	IF	CITATIONS
91	An Ultramicroporous Nickel-Based Metal–Organic Framework for Adsorption Separation of CO ₂ over N ₂ or CH ₄ . Energy & Fuels, 2018, 32, 8676-8682.	2.5	23
92	A pillar-layer metal-organic framework for efficient adsorption separation of propylene over propane. Separation and Purification Technology, 2018, 204, 75-80.	3.9	38
93	Selective Adsorptive Separation of CO ₂ /CH ₄ and CO ₂ /N ₂ by a Water Resistant Zirconium–Porphyrin Metal–Organic Framework. Industrial & Engineering Chemistry Research, 2018, 57, 12215-12224.	1.8	48
94	High-Throughput Screening of Metal-Organic Frameworks for the Separation of Hydrogen Sulfide and Carbon Dioxide from Natural Gas. Acta Chimica Sinica, 2018, 76, 785.	0.5	13
95	A gemini-type superspreader: Synthesis, spreading behavior and superspreading mechanism. Chemical Engineering Journal, 2017, 315, 262-273.	6.6	19
96	Selective Adsorption of Light Alkanes on a Highly Robust Indium Based Metal–Organic Framework. Industrial & Engineering Chemistry Research, 2017, 56, 4488-4495.	1.8	59
97	Formation of willow leaf-like structures composed of NH2-MIL68(In) on a multifunctional multiwalled carbon nanotube backbone for enhanced photocatalytic reduction of Cr(VI). Nano Research, 2017, 10, 3543-3556.	5.8	65
98	Efficient Mechanochemical Synthesis of MOF-5 for Linear Alkanes Adsorption. Journal of Chemical & Engineering Data, 2017, 62, 2030-2036.	1.0	101
99	Molecular Design of Zirconium Tetrazolate Metal–Organic Frameworks for CO ₂ Capture. Crystal Growth and Design, 2017, 17, 543-549.	1.4	36
100	High-Throughput Computational Screening of Metal–Organic Frameworks for Thiol Capture. Journal of Physical Chemistry C, 2017, 121, 22208-22215.	1.5	38
101	Efficient adsorptive separation of C3H6 over C3H8 on flexible and thermoresponsive CPL-1. Chemical Engineering Journal, 2017, 328, 360-367.	6.6	81
102	Enhanced Adsorption Performance of Aromatics on a Novel Chromium-Based MIL-101@Graphite Oxide Composite. Energy & amp; Fuels, 2017, 31, 13985-13990.	2.5	20
103	Generation of novel patient-derived CIC- DUX4 sarcoma xenografts and cell lines. Scientific Reports, 2017, 7, 4712.	1.6	46
104	Highly efficient mechanochemical synthesis of an indium based metal-organic framework with excellent water stability. Chemical Engineering Science, 2017, 158, 539-544.	1.9	55
105	A new MOF-505@GO composite with high selectivity for CO 2 /CH 4 and CO 2 /N 2 separation. Chemical Engineering Journal, 2017, 308, 1065-1072.	6.6	230
106	Proteomic approach toward determining the molecular background of pazopanib resistance in synovial sarcoma. Oncotarget, 2017, 8, 109587-109595.	0.8	13
107	A novel bimetallic MIL-101(Cr, Mg) with high CO2 adsorption capacity and CO2/N2 selectivity. Chemical Engineering Science, 2016, 147, 109-117.	1.9	136
108	Seawater Pervaporation through Zeolitic Imidazolate Framework Membranes: Atomistic Simulation Study. ACS Applied Materials & Interfaces, 2016, 8, 13392-13399.	4.0	72

#	Article	IF	CITATIONS
109	High-throughput computational screening of 137953 metal–organic frameworks for membrane separation of a CO ₂ /N ₂ /CH ₄ mixture. Journal of Materials Chemistry A, 2016, 4, 15904-15912.	5.2	99
110	Ethane selective adsorbent Ni(bdc)(ted)0.5 with high uptake and its significance in adsorption separation of ethane and ethylene. Chemical Engineering Science, 2016, 148, 275-281.	1.9	141
111	In silico screening of 4764 computation-ready, experimental metal–organic frameworks for CO ₂ separation. Journal of Materials Chemistry A, 2016, 4, 2105-2114.	5.2	109
112	Design of amine-functionalized metal–organic frameworks for CO ₂ separation: the more amine, the better?. Chemical Communications, 2016, 52, 974-977.	2.2	76
113	Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H ₂ /CO ₂ selectivity. Journal of Materials Chemistry A, 2015, 3, 4722-4728.	5.2	103
114	Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures. Chemical Engineering Journal, 2015, 270, 385-392.	6.6	115
115	Competitive adsorption of water vapor with VOCs dichloroethane, ethyl acetate and benzene on MIL-101(Cr) in humid atmosphere. RSC Advances, 2015, 5, 1827-1834.	1.7	92
116	Molecular dynamics simulations on the melting of gold nanoparticles. Phase Transitions, 2014, 87, 59-70.	0.6	42
117	Advanced Monte Carlo simulations of the adsorption of chiral alcohols in a homochiral metalâ€organic framework. AICHE Journal, 2014, 60, 2324-2334.	1.8	14
118	Designing new amine functionalized metal-organic frameworks for carbon dioxide/methane separation. Fluid Phase Equilibria, 2014, 362, 342-348.	1.4	15
119	Adsorption performance of a MIL-101(Cr)/graphite oxide composite for a series of n-alkanes. RSC Advances, 2014, 4, 56216-56223.	1.7	47
120	A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone. Journal of Materials Chemistry A, 2014, 2, 4722-4730.	5.2	202
121	Preparation and Adsorption Performance of GrO@Cu-BTC for Separation of CO ₂ /CH ₄ . Industrial & Engineering Chemistry Research, 2014, 53, 11176-11184.	1.8	124
122	Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8. Adsorption, 2013, 19, 25-37.	1.4	115
123	Decomposition of Toluene in a Plasma Catalysis SystemÂwith NiO, MnO2, CeO2, Fe2O3, and CuO Catalysts. Plasma Chemistry and Plasma Processing, 2013, 33, 1073-1082.	1.1	43
124	Enhancement of <scp>CO₂</scp> Adsorption and <scp>CO₂/N₂</scp> Selectivity on <scp>ZIF</scp> â€8 via Postsynthetic Modification. AICHE Journal, 2013, 59, 2195-2206.	1.8	171
125	Noble Gas Adsorption in Copper Trimesate, HKUST-1: An Experimental and Computational Study. Journal of Physical Chemistry C, 2013, 117, 20116-20126.	1.5	92
126	Adsorption Isotherms, Kinetics, and Desorption of 1,2-Dichloroethane on Chromium-Based Metal Organic Framework MIL-101. Separation Science and Technology, 2013, 48, 1479-1489.	1.3	49

#	Article	IF	CITATIONS
127	Role of Temperature in the Structure of Zn(II)-1,4,-BDC Metal-Organic Frameworks and their Adsorption and Diffusion Properties for Carbon Dioxide. Separation Science and Technology, 2011, 46, 1337-1345.	1.3	7
128	Adsorption and Diffusion of Benzene on Chromium-Based Metal Organic Framework MIL-101 Synthesized by Microwave Irradiation. Industrial & Engineering Chemistry Research, 2011, 50, 2254-2261.	1.8	127
129	Adsorption and Diffusion of Ethyl Acetate on the Chromium-Based Metal–Organic Framework MIL-101. Journal of Chemical & Engineering Data, 2011, 56, 3419-3425.	1.0	32
130	Molecular simulation on the separation of water/ethanol azeotropic mixture by poly(vinyl alcohol) membrane. Fluid Phase Equilibria, 2011, 302, 14-20.	1.4	21
131	Adsorption of CO ₂ on Zeolite 13X and Activated Carbon with Higher Surface Area. Separation Science and Technology, 2010, 45, 710-719.	1.3	109
132	Effects of loading different metal ions on an activated carbon on the desorption activation energy of dichloromethane/trichloromethane. Journal of Hazardous Materials, 2010, 179, 790-794.	6.5	34
133	Effect of textural property of coconut shell-based activated carbon on desorption activation energy of benzothiophene. Frontiers of Chemical Engineering in China, 2008, 2, 269-275.	0.6	2
134	Adsorption of Benzothiophene and Dibenzothiophene on Ion-Impregnated Activated Carbons and Ion-Exchanged Y Zeolites. Energy & Fuels, 2008, 22, 3858-3863.	2.5	112
135	Estimation of Activation Energy of Desorption of n-Hexanol from Activated Carbons by the TPD Technique. Adsorption Science and Technology, 2003, 21, 125-133.	1.5	25