List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3000434/publications.pdf Version: 2024-02-01

MADIA TENIE

#	Article	IF	CITATIONS
1	Confocal imaging dataset to assess endothelial cell orientation during extreme glucose conditions. Scientific Data, 2022, 9, 26.	5.3	1
2	Experimental Characterization and Mathematical Modeling of the Adsorption of Proteins and Cells on Biomimetic Hydroxyapatite. ACS Omega, 2022, 7, 908-920.	3.5	3
3	Photophysiological response of Symbiodiniaceae single cells to temperature stress. ISME Journal, 2022, 16, 2060-2064.	9.8	3
4	Microfluidics platform for studies of peptide – polyelectrolyte interaction. International Journal of Pharmaceutics, 2022, 621, 121785.	5.2	3
5	Integrated cooling system for microfluidic PDMS devices used in biological microscopy studies. Journal of Micromechanics and Microengineering, 2022, 32, 087001.	2.6	1
6	A microfluidic-based approach to investigate the inflammatory response of macrophages to pristine and drug-loaded nanostructured hydroxyapatite. Materials Today Bio, 2022, 16, 100351.	5.5	0
7	Effect of the Addition Frequency of 5-Azacytidine in Both Micro- and Macroscale Cultures. Cellular and Molecular Bioengineering, 2021, 14, 121-130.	2.1	1
8	A microscopy-compatible temperature regulation system for single-cell phenotype analysis – demonstrated by thermoresponse mapping of microalgae. Lab on A Chip, 2021, 21, 1694-1705.	6.0	9
9	<i>Organ-on-a-chip technology:</i> a novel approach to investigate cardiovascular diseases. Cardiovascular Research, 2021, 117, 2742-2754.	3.8	53
10	Acoustic focusing of beads and cells in hydrogel droplets. Scientific Reports, 2021, 11, 7479.	3.3	9
11	A droplet acoustofluidic platform for time-controlled microbead-based reactions. Biomicrofluidics, 2021, 15, 034103.	2.4	3
12	A microfluidics-based method for culturing osteoblasts on biomimetic hydroxyapatite. Acta Biomaterialia, 2021, 127, 327-337.	8.3	18
13	In-Line Analysis of Organ-on-Chip Systems with Sensors: Integration, Fabrication, Challenges, and Potential. ACS Biomaterials Science and Engineering, 2021, 7, 2926-2948.	5.2	95
14	Binary acoustic trapping in a glass capillary. Journal Physics D: Applied Physics, 2021, 54, 355401.	2.8	8
15	Fabrication and characterisation of a silicon-borosilicate glass microfluidic device for synchrotron-based hard X-ray spectroscopy studies. RSC Advances, 2021, 11, 29859-29869.	3.6	7
16	Brain microvasculature endothelial cell orientation on micropatterned hydrogels is affected by glucose level variations. Scientific Reports, 2021, 11, 19608.	3.3	4
17	Exploring microfluidics as a tool to evaluate the biological properties of a titanium alloy under dynamic conditions. Biomaterials Science, 2020, 8, 6309-6321.	5.4	11
18	Fabrication of Silicon Microfluidic Chips for Acoustic Particle Focusing Using Direct Laser Writing. Micromachines, 2020, 11, 113.	2.9	10

#	Article	IF	CITATIONS
19	Optimisation of the droplet split design for high acoustic particle enrichment in droplet microfluidics. Microelectronic Engineering, 2020, 226, 111303.	2.4	4
20	PDMS leaching and its implications for on-chip studies focusing on bone regeneration applications. Organs-on-a-Chip, 2020, 2, 100004.	3.2	40
21	A practical guide to microfabrication and patterning of hydrogels for biomimetic cell culture scaffolds. Organs-on-a-Chip, 2020, 2, 100003.	3.2	51
22	Dynamics of DNA Clogging in Hafnium Oxide Nanopores. Journal of Physical Chemistry B, 2020, 124, 11573-11583.	2.6	4
23	An acoustofluidic platform for non-contact trapping of cell-laden hydrogel droplets compatible with optical microscopy. Biomicrofluidics, 2019, 13, 044101.	2.4	13
24	Droplet Dilution Unit Operation Including Bead Washing Using Integrated Acoustophoresis. , 2019, , .		0
25	Trapping of Cell-Laden Hyaluronic Acid-Acrylamide Hydrogel Droplets using Bulk Acoustic Waves. , 2019, , .		0
26	Integrated thin film resistive sensors for <i>in situ</i> temperature measurements in an acoustic trap. Journal of Micromechanics and Microengineering, 2019, 29, 095003.	2.6	6
27	On-chip background dilution in droplets with high particle recovery using acoustophoresis. Biomicrofluidics, 2019, 13, 064123.	2.4	8
28	Binary particle separation in droplet microfluidics using acoustophoresis. Applied Physics Letters, 2018, 112, .	3.3	32
29	Particle Manipulation Methods in Droplet Microfluidics. Analytical Chemistry, 2018, 90, 1434-1443.	6.5	39
30	Intra-droplet acoustic particle focusing: simulations and experimental observations. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	17
31	Biomimetic spinning of artificial spider silk from a chimeric minispidroin. Nature Chemical Biology, 2017, 13, 262-264.	8.0	231
32	An intra-droplet particle switch for droplet microfluidics using bulk acoustic waves. Biomicrofluidics, 2017, 11, 031101.	2.4	21
33	Fabrication of user-friendly and biomimetic 1,1′-carbonyldiimidazole cross-linked gelatin/agar microfluidic devices. Materials Science and Engineering C, 2017, 76, 1175-1180.	7.3	6
34	Improved positioning and detectability of microparticles in droplet microfluidics using two-dimensional acoustophoresis. Journal of Micromechanics and Microengineering, 2017, 27, 084002.	2.6	9
35	Evaluation of Biocompatibility and Release of Reactive Oxygen Species of Aluminum Oxide-Coated Materials. ACS Omega, 2016, 1, 706-713.	3.5	14
36	Simvastatin and zinc synergistically enhance osteoblasts activity and decrease the acute response of inflammatory cells. Journal of Materials Science: Materials in Medicine, 2016, 27, 23.	3.6	19

#	Article	IF	CITATIONS
37	In Vitro Blood–Brain Barrier Models—An Overview of Established Models and New Microfluidic Approaches. Journal of Pharmaceutical Sciences, 2015, 104, 2727-2746.	3.3	156
38	Dense high-aspect ratio 3D carbon pillars on interdigitated microelectrode arrays. Carbon, 2015, 94, 792-803.	10.3	28
39	Controlled Lateral Positioning of Microparticles Inside Droplets Using Acoustophoresis. Analytical Chemistry, 2015, 87, 10521-10526.	6.5	34
40	Acoustophoretic removal of proteins from blood components. Biomedical Microdevices, 2015, 17, 95.	2.8	13
41	Acoustic trapping as a generic non-contact incubation site for multiplex bead-based assays. Analytica Chimica Acta, 2015, 853, 682-688.	5.4	16
42	In-situ monitoring of potential enhanced DNA related processes using electrochemical quartz crystal microbalance with dissipation (EQCM-D). Electrochemistry Communications, 2014, 48, 111-114.	4.7	12
43	Microfluidic PMMA interfaces for rectangular glass capillaries. Journal of Micromechanics and Microengineering, 2014, 24, 027003.	2.6	17
44	Fabrication of high-aspect ratio SU-8 micropillar arrays. Microelectronic Engineering, 2012, 98, 483-487.	2.4	49
45	Nanomechanical Sensing. Journal of Sensors, 2012, 2012, 1-1.	1.1	0
46	Cantilever-like micromechanical sensors. Reports on Progress in Physics, 2011, 74, 036101.	20.1	473
47	Development of nanoporous gold electrodes for electrochemical applications. Microelectronic Engineering, 2011, 88, 2379-2382.	2.4	13
48	Development of a microfabricated electrochemical-cantilever hybrid platform. Sensors and Actuators B: Chemical, 2011, 157, 321-327.	7.8	12
49	An electrochemical-cantilever platform for hybrid sensing applications. , 2011, , .		0
50	Drift study of SU8 cantilevers in liquid and gaseous environments. Ultramicroscopy, 2010, 110, 596-598.	1.9	14
51	An electrochemical-cantilever hybrid sensor for metal ions. , 2010, , .		0
52	Gold cleaning methods for electrochemical detection applications. Microelectronic Engineering, 2009, 86, 1282-1285.	2.4	257
53	A novel fabrication technique for free-hanging homogeneous polymeric cantilever waveguides. Journal of Micromechanics and Microengineering, 2008, 18, 015017.	2.6	2
54	SU-8 Cantilevers for Bio/chemical Sensing; Fabrication, Characterisation and Development of Novel Read-out Methods. Sensors, 2008, 8, 1595-1612.	3.8	127

#	Article	IF	CITATIONS
55	Integrated optical readout for miniaturization of cantilever-based sensor system. Applied Physics Letters, 2007, 91, 103512.	3.3	41
56	Single-Mode Waveguides With SU-8 Polymer Core and Cladding for MOEMS Applications. Journal of Lightwave Technology, 2007, 25, 1284-1289.	4.6	94
57	Monolithic single mode SU-8 waveguides for integrated optics. , 2006, 6112, 43.		7
58	Immobilisation of DNA to polymerised SU-8 photoresist. Biosensors and Bioelectronics, 2006, 21, 1327-1332.	10.1	81
59	Sloped side walls in SU-8 structures with â€~Step-and-Flash' processing. Microelectronic Engineering, 2006, 83, 1269-1272.	2.4	4
60	Low-noise polymeric nanomechanical biosensors. Applied Physics Letters, 2006, 88, 113901.	3.3	66
61	Investigation of the bond strength between the photo-sensitive polymer SU-8 and gold. Microelectronic Engineering, 2005, 78-79, 152-157.	2.4	56
62	Dry release of all-polymer structures. Microelectronic Engineering, 2005, 78-79, 88-92.	2.4	37
63	Polymeric micro-channel-based functionalisation system for micro-cantilevers. Ultramicroscopy, 2005, 105, 281-286.	1.9	5
64	Highly sensitive polymer-based cantilever-sensors for DNA detection. Ultramicroscopy, 2005, 105, 215-222.	1.9	153
65	Rendering SU-8 hydrophilic to facilitate use in micro channel fabrication. Journal of Micromechanics and Microengineering, 2004, 14, 1614-1617.	2.6	91