Bénédicte Chazaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2999648/publications.pdf

Version: 2024-02-01

86 papers 8,598 citations

66343 42 h-index 87 g-index

94 all docs 94 docs citations 94 times ranked 9672 citing authors

#	Article	IF	CITATIONS
1	Glucocorticoids coordinate macrophage metabolism through the regulation of the tricarboxylic acid cycle. Molecular Metabolism, 2022, 57, 101424.	6.5	18
2	Involvement of Type I Interferon Signaling in Muscle Stem Cell Proliferation During Dermatomyositis. Neurology, 2022, 98, .	1.1	13
3	Nanomedicine for Gene Delivery and Drug Repurposing in the Treatment of Muscular Dystrophies. Pharmaceutics, 2021, 13, 278.	4.5	17
4	Negative elongation factor regulates muscle progenitor expansion for efficient myofiber repair and stem cell pool repopulation. Developmental Cell, 2021, 56, 1014-1029.e7.	7.0	18
5	Inflammation during post-injury skeletal muscle regeneration. Seminars in Cell and Developmental Biology, 2021, 119, 32-38.	5.0	34
6	Histological Analysis of Tibialis Anterior Muscle of DMDmdx4Cv Mice from 1 to 24 Months. Journal of Neuromuscular Diseases, 2021, 8, 513-524.	2.6	3
7	Interplay between myofibers and pro-inflammatory macrophages controls muscle damage in <i>mdx</i> mice. Journal of Cell Science, 2021, 134, .	2.0	16
8	Benefits and pathologies associated with the inflammatory response. Experimental Cell Research, 2021, 409, 112905.	2.6	6
9	Diabetes-induced skeletal muscle fibrosis: Fibro-adipogenic precursors at work. Cell Metabolism, 2021, 33, 2095-2096.	16.2	4
10	The dominant-negative mitochondrial calcium uniporter subunit MCUb drives macrophage polarization during skeletal muscle regeneration. Science Signaling, 2021, 14, eabf3838.	3.6	17
11	Efferocytosis during Skeletal Muscle Regeneration. Cells, 2021, 10, 3267.	4.1	15
12	Derivation and Characterization of Immortalized Human Muscle Satellite Cell Clones from Muscular Dystrophy Patients and Healthy Individuals. Cells, 2020, 9, 1780.	4.1	13
13	A macrophage-derived adipokine supports skeletal muscle regeneration. Nature Metabolism, 2020, 2, 213-214.	11.9	5
14	Recombinant HvRNASET2 protein induces marked connective tissue remodelling in the invertebrate model Hirudo verbana. Cell and Tissue Research, 2020, 380, 565-579.	2.9	6
15	Inflammation and Skeletal Muscle Regeneration: Leave It to the Macrophages!. Trends in Immunology, 2020, 41, 481-492.	6.8	198
16	Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation. Journal of Clinical Investigation, 2020, 130, 1156-1167.	8.2	112
17	Glucocorticoids Shape Macrophage Phenotype for Tissue Repair. Frontiers in Immunology, 2019, 10, 1591.	4.8	73
18	Aging Disrupts Muscle Stem Cell Function by Impairing Matricellular WISP1 Secretion from Fibro-Adipogenic Progenitors. Cell Stem Cell, 2019, 24, 433-446.e7.	11.1	191

#	Article	IF	Citations
19	Open-CSAM, a new tool for semi-automated analysis of myofiber cross-sectional area in regenerating adult skeletal muscle. Skeletal Muscle, 2019, 9, 2.	4.2	51
20	Heparan Sulfate Mimetics Accelerate Postinjury Skeletal Muscle Regeneration. Tissue Engineering - Part A, 2019, 25, 1667-1676.	3.1	7
21	Interferon-signature in idiopathic inflammatory myopathies. Current Opinion in Rheumatology, 2019, 31, 634-642.	4.3	31
22	Macrophage-derived superoxide production and antioxidant response following skeletal muscle injury. Free Radical Biology and Medicine, 2018, 120, 33-40.	2.9	16
23	Cell sorting of various cell types from mouse and human skeletal muscle. Methods, 2018, 134-135, 50-55.	3.8	15
24	Myogenic Progenitor Cells Exhibit Type I Interferon–Driven Proangiogenic Properties and Molecular Signature During Juvenile Dermatomyositis. Arthritis and Rheumatology, 2018, 70, 134-145.	5.6	38
25	High mobility group box 1 orchestrates tissue regeneration via CXCR4. Journal of Experimental Medicine, 2018, 215, 303-318.	8.5	131
26	AMPK Activation Regulates LTBP4-Dependent TGF-Î ² 1 Secretion by Pro-inflammatory Macrophages and Controls Fibrosis in Duchenne Muscular Dystrophy. Cell Reports, 2018, 25, 2163-2176.e6.	6.4	137
27	Investigating the Vascular Niche: Three-Dimensional Co-culture of Human Skeletal Muscle Stem Cells and Endothelial Cells. Methods in Molecular Biology, 2018, 2002, 121-128.	0.9	4
28	Muscle Satellite Cell Cross-Talk with a Vascular Niche Maintains Quiescence via VEGF and Notch Signaling. Cell Stem Cell, 2018, 23, 530-543.e9.	11.1	223
29	Effects of Macrophage Conditioned-Medium on Murine and Human Muscle Cells: Analysis of Proliferation, Differentiation, and Fusion. Methods in Molecular Biology, 2017, 1556, 317-327.	0.9	7
30	Human skeletal muscle fibroblasts stimulate <i>in vitro</i> myogenesis and <i>in vivo</i> muscle regeneration. Journal of Physiology, 2017, 595, 5115-5127.	2.9	79
31	<scp>AMPK</scp> α1â€ <scp>LDH</scp> pathway regulates muscle stem cell selfâ€renewal by controlling metabolic homeostasis. EMBO Journal, 2017, 36, 1946-1962.	7.8	95
32	Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration. FEBS Letters, 2017, 591, 3007-3021.	2.8	82
33	Redox Control of Skeletal Muscle Regeneration. Antioxidants and Redox Signaling, 2017, 27, 276-310.	5.4	124
34	Coupling between Myogenesis and Angiogenesis during Skeletal Muscle Regeneration Is Stimulated by Restorative Macrophages. Stem Cell Reports, 2017, 9, 2018-2033.	4.8	171
35	Vasculopathy-related clinical and pathological features are associated with severe juvenile dermatomyositis. Rheumatology, 2016, 55, kev359.	1.9	21
36	Highly Dynamic Transcriptional Signature of Distinct Macrophage Subsets during Sterile Inflammation, Resolution, and Tissue Repair. Journal of Immunology, 2016, 196, 4771-4782.	0.8	147

#	Article	IF	CITATIONS
37	Macrophage PPAR \hat{I}^3 , a Lipid Activated Transcription Factor Controls the Growth Factor GDF3 and Skeletal Muscle Regeneration. Immunity, 2016, 45, 1038-1051.	14.3	134
38	Inflammation during skeletal muscle regeneration and tissue remodeling: application to exerciseâ€induced muscle damage management. Immunology and Cell Biology, 2016, 94, 140-145.	2.3	136
39	Notch Stimulates Both Self-Renewal and Lineage Plasticity in a Subset of Murine CD9High Committed Megakaryocytic Progenitors. PLoS ONE, 2016, 11, e0153860.	2.5	5
40	CX3CR1 deficiency promotes muscle repair and regeneration by enhancing macrophage ApoE production. Nature Communications, 2015, 6, 8972.	12.8	54
41	Skeletal Muscle Microvasculature: A Highly Dynamic Lifeline. Physiology, 2015, 30, 417-427.	3.1	83
42	Structural and Functional Alterations of Skeletal Muscle Microvasculature in Dystrophin-Deficient mdx Mice. American Journal of Pathology, 2015, 185, 2482-2494.	3.8	36
43	Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK). Journal of Biological Chemistry, 2015, 290, 16979-16988.	3.4	149
44	Myeloid HIFs Are Dispensable for Resolution of Inflammation during Skeletal Muscle Regeneration. Journal of Immunology, 2015, 194, 3389-3399.	0.8	21
45	Macrophages: Supportive cells for tissue repair and regeneration. Immunobiology, 2014, 219, 172-178.	1.9	246
46	Inflamm-aging: STAT3 Signaling Pushes Muscle Stem Cells off Balance. Cell Stem Cell, 2014, 15, 401-402.	11.1	22
47	AMPKα1 Regulates Macrophage Skewing at the Time of Resolution of Inflammation during Skeletal Muscle Regeneration. Cell Metabolism, 2013, 18, 251-264.	16.2	375
48	Human and Murine Skeletal Muscle Reserve Cells. Methods in Molecular Biology, 2013, 1035, 165-177.	0.9	10
49	Tissue LyC6â^' Macrophages Are Generated in the Absence of Circulating LyC6â^' Monocytes and Nur77 in a Model of Muscle Regeneration. Journal of Immunology, 2013, 191, 5695-5701.	0.8	80
50	Differentially Activated Macrophages Orchestrate Myogenic Precursor Cell Fate During Human Skeletal Muscle Regeneration. Stem Cells, 2013, 31, 384-396.	3.2	343
51	Monocyte/macrophage interactions with myogenic precursor cells during skeletal muscle regeneration. FEBS Journal, 2013, 280, 4118-4130.	4.7	200
52	Proinflammatory Macrophages Enhance the Regenerative Capacity of Human Myoblasts by Modifying Their Kinetics of Proliferation and Differentiation. Molecular Therapy, 2012, 20, 2168-2179.	8.2	120
53	Macrophages Improve Survival, Proliferation and Migration of Engrafted Myogenic Precursor Cells into MDX Skeletal Muscle. PLoS ONE, 2012, 7, e46698.	2.5	52
54	A new model of experimental fibrosis in hindlimb skeletal muscle of adult <i>mdx</i> mouse mimicking muscular dystrophy. Muscle and Nerve, 2012, 45, 803-814.	2.2	37

#	Article	IF	Citations
55	Macrophage AMPK $\hat{l}\pm 1$ is necessary for the resolution of inflammation during skeletal muscle regeneration. FASEB Journal, 2012, 26, 1078.5.	0.5	О
56	Blood Vessels and the Satellite Cell Niche. Current Topics in Developmental Biology, 2011, 96, 121-138.	2.2	63
57	Role of Thrombospondin 1 in Macrophage Inflammation in Dysferlin Myopathy. Journal of Neuropathology and Experimental Neurology, 2010, 69, 643-653.	1.7	33
58	Dual effect of HGF on satellite/myogenic cell quiescence. Focus on "High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo― American Journal of Physiology - Cell Physiology, 2010, 298, C448-C449.	4.6	7
59	Regulation of myogenic stem cell behaviour by vessel cells: The "ménage à trois" of satellite cells, periendothelial cells and endothelial cells. Cell Cycle, 2010, 9, 892-896.	2.6	90
60	Autocrine and Paracrine Angiopoietin $1/\mathrm{Tie}$ -2 Signaling Promotes Muscle Satellite Cell Self-Renewal. Cell Stem Cell, 2009, 5, 298-309.	11.1	197
61	Dual and Beneficial Roles of Macrophages During Skeletal Muscle Regeneration. Exercise and Sport Sciences Reviews, 2009, 37, 18-22.	3.0	195
62	Modulation of Macrophage Activation State Protects Tissue from Necrosis during Critical Limb Ischemia in Thrombospondin-1-Deficient Mice. PLoS ONE, 2008, 3, e3950.	2.5	64
63	Muscle Satellite Cells and Endothelial Cells: Close Neighbors and Privileged Partners. Molecular Biology of the Cell, 2007, 18, 1397-1409.	2.1	575
64	Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. Journal of Experimental Medicine, 2007, 204, 1057-1069.	8.5	1,669
65	Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. Journal of Cell Biology, 2007, 177, i7-i7.	5.2	1
66	Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems. Journal of Cell Science, 2006, 119, 2497-2507.	2.0	137
67	ADAM12 and $\hat{l}\pm9\hat{l}^21$ Integrin Are Instrumental in Human Myogenic Cell Differentiation. Molecular Biology of the Cell, 2005, 16, 861-870.	2.1	88
68	In Vivo Fusion of Circulating Fluorescent Cells with Dystrophin-Deficient Myofibers Results in Extensive Sarcoplasmic Fluorescence Expression but Limited Dystrophin Sarcolemmal Expression. American Journal of Pathology, 2005, 166, 1741-1748.	3.8	33
69	Adult Bone Marrow-Derived Stem Cells in Muscle Connective Tissue and Satellite Cell Niches. American Journal of Pathology, 2004, 164, 773-779.	3.8	124
70	Monocyte chemoattractant protein 1 and chemokine receptor CCR2 productions in Guillain–Barré syndrome and experimental autoimmune neuritis. Journal of Neuroimmunology, 2003, 134, 118-127.	2.3	64
71	Magnetic resonance imaging of targeted catheter-based implantation of myogenic precursor cells into infarcted left ventricular myocardium. Journal of the American College of Cardiology, 2003, 41, 1841-1846.	2.8	89
72	Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. Journal of Cell Biology, 2003, 163, 1133-1143.	5.2	363

#	Article	IF	Citations
73	Endoventricular porcine autologous myoblast transplantation can be successfully achieved with minor mechanical cell damage. Cardiovascular Research, 2003, 58, 444-450.	3.8	38
74	Promigratory Effect of Plasminogen Activator Inhibitor-1 on Invasive Breast Cancer Cell Populations. American Journal of Pathology, 2002, 160, 237-246.	3.8	97
75	Inhibition of the adhesion step of leukodiapedesis: a critical event in the recovery of Guillain–Barré syndrome associated with accumulation of proteolytically active lymphocytes in blood. Journal of Neuroimmunology, 2001, 114, 188-196.	2.3	14
76	Quality Control of Coated Antibodies: New, Rapid Determination of Binding Affinity. Clinical Chemistry and Laboratory Medicine, 2000, 38, 239-43.	2.3	3
77	Involvement of the [uPAR:uPA:PAI-1:LRP] Complex in Human Myogenic Cell Motility. Experimental Cell Research, 2000, 258, 237-244.	2.6	45
78	Differential expression of the IL-1 system components during in vitro myogenesis: Implication of IL- 1^2 in induction of myogenic cell apoptosis. Cell Death and Differentiation, 1999, 6, 1012-1021.	11.2	28
79	Zidovudine-induced mitochondrial disorder with massive liver steatosis, myopathy, lactic acidosis, and mitochondrial DNA depletion. Journal of Hepatology, 1999, 30, 156-160.	3.7	237
80	In vitro evaluation of human muscle satellite cell migration prior to fusion into myotubes. Journal of Muscle Research and Cell Motility, 1998, 19, 931-936.	2.0	16
81	Atypical microtubule organization in undifferentiated human colon cancer cells. Comptes Rendus De L'AcadÃ@mie Des Sciences SÃ@rie 3, Sciences De La Vie, 1998, 321, 11-18.	0.8	O
82	Interleukinâ€1 expression in inflammatory myopathies: evidence of marked immunoreactivity in sarcoid granulomas and muscle fibres showing ischaemic and regenerative changes. Neuropathology and Applied Neurobiology, 1997, 23, 132-140.	3.2	41
83	Interleukin-1 expression in normal motor endplates and muscle fibers showing neurogenic changes. Acta Neuropathologica, 1997, 94, 272-279.	7.7	15
84	Organization of the endoplasmic reticulum-Golgi system is related to the state of enterocytic differentiation of human HT-29 cells. Differentiation, 1996, 60, 179-191.	1.9	4
85	Ricin Toxicity and Intracellular Routing in Tumoral HT-29 Cells. Experimental Cell Research, 1995, 221, 205-213.	2.6	3
86	Ricin Toxicity and Intracellular Routing in Tumoral HT-29 Cells. Experimental Cell Research, 1995, 221, 214-220.	2.6	12