Martine Hoogman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2999310/publications.pdf

Version: 2024-02-01

66343 49909 9,271 100 42 87 citations h-index g-index papers 132 132 132 11480 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Common genetic variants influence human subcortical brain structures. Nature, 2015, 520, 224-229.	27.8	772
2	The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior, 2014, 8, 153-182.	2.1	696
3	Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 2012, 44, 552-561.	21.4	594
4	Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry,the, 2017, 4, 310-319.	7.4	565
5	The genetic architecture of the human cerebral cortex. Science, 2020, 367, .	12.6	450
6	ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Translational Psychiatry, 2020, 10, 100.	4.8	365
7	Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5154-E5163.	7.1	299
8	Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of Large-Scale Clinical and Population-Based Samples. American Journal of Psychiatry, 2019, 176, 531-542.	7.2	261
9	Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.	12.8	250
10	Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nature Neuroscience, 2016, 19, 1569-1582.	14.8	213
11	Common variants at 12q14 and 12q24 are associated with hippocampal volume. Nature Genetics, 2012, 44, 545-551.	21.4	212
12	Dissociable Effects of Dopamine and Serotonin on Reversal Learning. Neuron, 2013, 80, 1090-1100.	8.1	210
13	Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept. Nature Neuroscience, 2016, 19, 420-431.	14.8	204
14	Genetic architecture of subcortical brain structures in 38,851 individuals. Nature Genetics, 2019, 51, 1624-1636.	21.4	192
15	Multicenter Analysis of the SLC6A3/DAT1 VNTR Haplotype in Persistent ADHD Suggests Differential Involvement of the Gene in Childhood and Persistent ADHD. Neuropsychopharmacology, 2010, 35, 656-664.	5.4	180
16	ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. NeuroImage, 2017, 145, 389-408.	4.2	173
17	Cognitive outcome in adults after bacterial meningitis. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 1092-1096.	1.9	160
18	Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging and Behavior, 2017, 11, 1497-1514.	2.1	144

#	Article	IF	CITATIONS
19	Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3–90 years. Human Brain Mapping, 2022, 43, 431-451.	3.6	143
20	Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders. JAMA Psychiatry, 2021, 78, 47.	11.0	136
21	Subcortical Brain Volume, Regional Cortical Thickness, and Cortical Surface Area Across Disorders: Findings From the ENIGMA ADHD, ASD, and OCD Working Groups. American Journal of Psychiatry, 2020, 177, 834-843.	7.2	120
22	Brain alterations in adult ADHD: Effects of gender, treatment and comorbid depression. European Neuropsychopharmacology, 2014, 24, 397-409.	0.7	116
23	Asymmetry within and around the human planum temporale is sexually dimorphic and influenced by genes involved in steroid hormone receptor activity. Cortex, 2015, 62, 41-55.	2.4	114
24	Individual differences <i>v.</i> the average patient: mapping the heterogeneity in ADHD using normative models. Psychological Medicine, 2020, 50, 314-323.	4.5	113
25	Cognitive heterogeneity in adult attention deficit/hyperactivity disorder: A systematic analysis of neuropsychological measurements. European Neuropsychopharmacology, 2015, 25, 2062-2074.	0.7	109
26	Differences in cerebral cortical anatomy of left- and right-handers. Frontiers in Psychology, 2014, 5, 261.	2.1	103
27	Dexamethasone and long-term outcome in adults with bacterial meningitis. Annals of Neurology, 2006, 60, 456-468.	5.3	95
28	Nitric Oxide Synthase Genotype Modulation of Impulsivity and Ventral Striatal Activity in Adult ADHD Patients and Healthy Comparison Subjects. American Journal of Psychiatry, 2011, 168, 1099-1106.	7.2	92
29	Mapping brain asymmetry in health and disease through the <scp>ENIGMA</scp> consortium. Human Brain Mapping, 2022, 43, 167-181.	3.6	89
30	Brain imaging genetics in ADHD and beyond – Mapping pathways from gene to disorder at different levels of complexity. Neuroscience and Biobehavioral Reviews, 2017, 80, 115-155.	6.1	83
31	Association of the dopamine transporter (<i>SLC6A3/DAT1</i>) gene 9–6 haplotype with adult ADHD. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1576-1579.	1.7	78
32	Greater male than female variability in regional brain structure across the lifespan. Human Brain Mapping, 2022, 43, 470-499.	3.6	76
33	Shared genetic background between children and adults with attention deficit/hyperactivity disorder. Neuropsychopharmacology, 2020, 45, 1617-1626.	5.4	72
34	Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years. Human Brain Mapping, 2022, 43, 452-469.	3.6	72
35	Deviant white matter structure in adults with attention-deficit/hyperactivity disorder points to aberrant myelination and affects neuropsychological performance. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 63, 14-22.	4.8	70
36	White Matter Microstructural Alterations in Children with ADHD: Categorical and Dimensional Perspectives. Neuropsychopharmacology, 2017, 42, 572-580.	5.4	68

#	Article	IF	CITATIONS
37	Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nature Communications, 2020, 11, 4796.	12.8	61
38	Consortium neuroscience of attention deficit/hyperactivity disorder and autism spectrum disorder: The <scp>ENIGMA</scp> adventure. Human Brain Mapping, 2022, 43, 37-55.	3.6	61
39	The Role of the Major Histocompatibility Complex Region in Cognition and Brain Structure: A Schizophrenia GWAS Follow-Up. American Journal of Psychiatry, 2013, 170, 877-885.	7.2	60
40	Case–Control Genome-Wide Association Study of Persistent Attention-Deficit Hyperactivity Disorder Identifies FBXO33 as a Novel Susceptibility Gene for the Disorder. Neuropsychopharmacology, 2015, 40, 915-926.	5.4	59
41	Characterising resting-state functional connectivity in a large sample of adults with ADHD. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2016, 67, 82-91.	4.8	53
42	Structural brain imaging studies offer clues about the effects of the shared genetic etiology among neuropsychiatric disorders. Molecular Psychiatry, 2021, 26, 2101-2110.	7.9	53
43	An overview of the first 5 years of the ENIGMA obsessive–compulsive disorder working group: The power of worldwide collaboration. Human Brain Mapping, 2022, 43, 23-36.	3.6	51
44	DIRAS2 is Associated with Adult ADHD, Related Traits, and Co-Morbid Disorders. Neuropsychopharmacology, 2011, 36, 2318-2327.	5.4	49
45	Creativity and ADHD: A review of behavioral studies, the effect of psychostimulants and neural underpinnings. Neuroscience and Biobehavioral Reviews, 2020, 119, 66-85.	6.1	49
46	The dopamine transporter haplotype and reward-related striatal responses in adult ADHD. European Neuropsychopharmacology, 2013, 23, 469-478.	0.7	44
47	Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets. Human Brain Mapping, 2014, 35, 3277-3289.	3.6	43
48	Lower white matter microstructure in the superior longitudinal fasciculus is associated with increased response time variability in adults with attention-deficit/hyperactivity disorder. Journal of Psychiatry and Neuroscience, 2015, 40, 344-351.	2.4	42
49	Similar Subgroups Based on Cognitive Performance Parse Heterogeneity in Adults With ADHD and Healthy Controls. Journal of Attention Disorders, 2018, 22, 281-292.	2.6	40
50	Analysis of structural brain asymmetries in attentionâ€deficit/hyperactivity disorder in 39 datasets. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2021, 62, 1202-1219.	5.2	40
51	Refinement by integration: aggregated effects of multimodal imaging markers on adult ADHD. Journal of Psychiatry and Neuroscience, 2017, 42, 386-394.	2.4	39
52	Cognitive flexibility depends on white matter microstructure of the basal ganglia. Neuropsychologia, 2014, 53, 171-177.	1.6	37
53	Shared and unique genetic contributions to attention deficit/hyperactivity disorder and substance use disorders: A pilot study of six candidate genes. European Neuropsychopharmacology, 2013, 23, 448-457.	0.7	36
54	Assessing the effects of common variation in the FOXP2 gene on human brain structure. Frontiers in Human Neuroscience, 2014, 8, 473.	2.0	36

#	Article	IF	CITATIONS
55	Reward modulation of cognitive function in adult attention-deficit/hyperactivity disorder. Behavioural Pharmacology, 2015, 26, 227-240.	1.7	35
56	Current Self-Reported Symptoms of Attention Deficit/Hyperactivity Disorder Are Associated with Total Brain Volume in Healthy Adults. PLoS ONE, 2012, 7, e31273.	2.5	34
57	A multicohort, longitudinal study of cerebellar development in attention deficit hyperactivity disorder. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2018, 59, 1114-1123.	5.2	34
58	A genomeâ€wide search for quantitative trait loci affecting the cortical surface area and thickness of Heschl's gyrus. Genes, Brain and Behavior, 2014, 13, 675-685.	2.2	31
59	Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults – Authors' reply. Lancet Psychiatry,the, 2017, 4, 440-441.	7.4	30
60	Neural correlates of cognitive function and symptoms in attention-deficit/hyperactivity disorder in adults. NeuroImage: Clinical, 2018, 19, 374-383.	2.7	29
61	Linked anatomical and functional brain alterations in children with attention-deficit/hyperactivity disorder. Neurolmage: Clinical, 2019, 23, 101851.	2.7	27
62	Transdiagnostic neuroimaging of reward system phenotypes in ADHD and comorbid disorders. Neuroscience and Biobehavioral Reviews, 2021, 128, 165-181.	6.1	26
63	Evidence for similar structural brain anomalies in youth and adult attention-deficit/hyperactivity disorder: a machine learning analysis. Translational Psychiatry, 2021, 11, 82.	4.8	25
64	Cognitive outcome in adults with moderate disability after pneumococcal meningitis. Journal of Infection, 2006, 52, 433-439.	3.3	22
65	Exploring <i>DRD4</i> and its interaction with <i>SLC6A3</i> as possible risk factors for adult ADHD: A metaâ€analysis in four European populations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 600-612.	1.7	22
66	Causal discovery in an adult ADHD data set suggests indirect link between <i>DAT1</i> genetic variants and striatal brain activation during reward processing. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 508-515.	1.7	19
67	Enlarged striatal volume in adults with ADHD carrying the 9-6 haplotype of the dopamine transporter gene DAT1. Journal of Neural Transmission, 2016, 123, 905-915.	2.8	19
68	Converging evidence does not support $\langle i \rangle GIT1 \langle i \rangle$ as an ADHD risk gene. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 492-507.	1.7	18
69	ADHD symptoms in healthy adults are associated with stressful life events and negative memory bias. ADHD Attention Deficit and Hyperactivity Disorders, 2018, 10, 151-160.	1.7	18
70	Monoamine and neuroendocrine gene-sets associate with frustration-based aggression in a gender-specific manner. European Neuropsychopharmacology, 2020, 30, 75-86.	0.7	17
71	Reproducibility in the absence of selective reporting: AnÂillustration from largeâ€scale brain asymmetry research. Human Brain Mapping, 2022, 43, 244-254.	3. 6	16
72	Handedness in ADHD: Meta-Analyses. Neuropsychology Review, 2022, 32, 877-892.	4.9	16

#	Article	IF	Citations
73	DNA methylation associated with persistent ADHD suggests TARBP1 as novel candidate. Neuropharmacology, 2021, 184, 108370.	4.1	14
74	Characterizing neuroanatomic heterogeneity in people with and without ADHD based on subcortical brain volumes. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2021, 62, 1140-1149.	5.2	14
75	Gray matter networks associated with attention and working memory deficit in ADHD across adolescence and adulthood. Translational Psychiatry, 2021, 11, 184.	4.8	14
76	Characterizing Creative Thinking and Creative Achievements in Relation to Symptoms of Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder. Frontiers in Psychiatry, 0, 13, .	2.6	13
77	Five factor model personality traits relate to adult attention-deficit/hyperactivity disorder but not to their distinct neurocognitive profiles. Psychiatry Research, 2017, 258, 255-261.	3.3	11
78	Verbal working memory-related functional connectivity alterations in boys with attention-deficit/hyperactivity disorder and the effects of methylphenidate. Journal of Psychopharmacology, 2017, 31, 1061-1069.	4.0	11
79	Pleiotropic Contribution of MECOM and AVPR1A to Aggression and Subcortical Brain Volumes. Frontiers in Behavioral Neuroscience, 2018, 12, 61.	2.0	11
80	Virtual Ontogeny of Cortical Growth Preceding Mental Illness. Biological Psychiatry, 2022, 92, 299-313.	1.3	11
81	Femaleâ€specific association of <i><scp>NOS</scp>1</i> genotype with white matter microstructure in ADHD patients and controls. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2017, 58, 958-966.	5.2	9
82	The brainâ€derived neurotrophic factor Val66Met polymorphism affects encoding of object locations during active navigation. European Journal of Neuroscience, 2017, 45, 1501-1511.	2.6	8
83	80. Subcortical Brain Volume, Regional Cortical Thickness and Surface Area Alterations Across ADHD, ASD, and OCD. Biological Psychiatry, 2019, 85, S33.	1.3	7
84	A Potential Role for the STXBP5-AS1 Gene in Adult ADHD Symptoms. Behavior Genetics, 2019, 49, 270-285.	2.1	6
85	Neuropsychological sequelae of bacterial meningitis: the influence of alcoholism and adjunctive dexamethasone therapy. Brain, 2006, 129, E46-E46.	7.6	4
86	Meta-analysis of the DRD5 VNTR in persistent ADHD. European Neuropsychopharmacology, 2016, 26, 1527-1532.	0.7	4
87	16. Brain Imaging of ADHD Across the Lifespan – Results of the Largest Study Worldwide From the Enigma ADHD Working Group. Biological Psychiatry, 2019, 85, S6-S7.	1.3	3
88	Dissecting the heterogeneous subcortical brain volume of autism spectrum disorder using community detection. Autism Research, 2022, 15, 42-55.	3.8	3
89	P.1.b.020 Subcortical volumes across the life span in ADHD: an ENIGMA collaboration. European Neuropsychopharmacology, 2015, 25, S189.	0.7	2
90	Structural Connectivity in ADHD: Evidence From 2500 Individuals From the ENIGMA-ADHD Collaboration. Biological Psychiatry, 2020, 87, S87.	1.3	2

#	Article	IF	CITATIONS
91	99. A Large Scale Study of Cortical and Cerebellar Morphology in ADHD across the Life span: An ENIGMA-ADHD Collaboration. Biological Psychiatry, 2017, 81, S41-S42.	1.3	1
92	T60. ADHD and the Cortex: Evidence From Large Clinical and Population Based Samples. Biological Psychiatry, 2018, 83, S152.	1.3	1
93	Structural Brain Differences Between and Across the ENIGMA OCD, ADHD and ASD Cohorts. Biological Psychiatry, 2020, 87, S87.	1.3	1
94	Virtual Histology of Cortical Thickness Reveals Shared Neurobiology Across Six Psychiatric Disorders. Biological Psychiatry, 2020, 87, S239-S240.	1.3	1
95	Association study of fibroblast growth factor genes and brain volumes in schizophrenic patients and healthy controls. Psychiatric Genetics, 2014, 24, 283-284.	1.1	0
96	Machine Learning Classifiers for ADHD and Comorbid Disorders. Biological Psychiatry, 2021, 89, S23-S24.	1.3	0
97	White Matter Microstructure in ADHD: Evidence From 2500 Individuals From the Enigma-ADHD Collaboration. Biological Psychiatry, 2021, 89, S22-S23.	1.3	0
98	Structural Brain Differences Between and Across the Enigma OCD, ADHD and ASD Cohorts. Biological Psychiatry, 2021, 89, S23.	1.3	0
99	Interconnected Anatomical and Functional Brain Alterations in Children with Attention-Deficit/Hyperactivity Disorder. SSRN Electronic Journal, 0, , .	0.4	0
100	Neural Correlates of Reactive Aggression in Adult Attention-Deficit/Hyperactivity Disorder. Frontiers in Psychiatry, 2022, 13, .	2.6	О