Paul F Robbins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2998851/publications.pdf Version: 2024-02-01

DALLE F ROBRING

#	Article	IF	CITATIONS
1	Breast Cancers Are Immunogenic: Immunologic Analyses and a Phase II Pilot Clinical Trial Using Mutation-Reactive Autologous Lymphocytes. Journal of Clinical Oncology, 2022, 40, 1741-1754.	1.6	65
2	Molecular signatures of antitumor neoantigen-reactive T cells from metastatic human cancers. Science, 2022, 375, 877-884.	12.6	156
3	A phenotypic signature that identifies neoantigen-reactive T cells in fresh human lung cancers. Cancer Cell, 2022, 40, 479-493.e6.	16.8	64
4	Neoantigen Identification and Response to Adoptive Cell Transfer in Anti–PD-1 NaÃ⁻ve and Experienced Patients with Metastatic Melanoma. Clinical Cancer Research, 2022, 28, 3042-3052.	7.0	18
5	Adoptive Cellular Therapy with Autologous Tumor-Infiltrating Lymphocytes and T-cell Receptor–Engineered T Cells Targeting Common p53 Neoantigens in Human Solid Tumors. Cancer Immunology Research, 2022, 10, 932-946.	3.4	52
6	Rapid Identification and Evaluation of Neoantigen-reactive T-Cell Receptors From Single Cells. Journal of Immunotherapy, 2021, 44, 1-8.	2.4	21
7	A machine learning model for ranking candidate HLA class I neoantigens based on known neoepitopes from multiple human tumor types. Nature Cancer, 2021, 2, 563-574.	13.2	38
8	Identification and Validation of T-cell Receptors Targeting <i>RAS</i> Hotspot Mutations in Human Cancers for Use in Cell-based Immunotherapy. Clinical Cancer Research, 2021, 27, 5084-5095.	7.0	26
9	Direct identification of neoantigen-specific TCRs from tumor specimens by high-throughput single-cell sequencing. , 2021, 9, e002595.		31
10	Identification of neoantigen-reactive T lymphocytes in the peripheral blood of a patient with glioblastoma. , 2021, 9, e002882.		13
11	Impact of Prior Treatment on the Efficacy of Adoptive Transfer of Tumor-Infiltrating Lymphocytes in Patients with Metastatic Melanoma. Clinical Cancer Research, 2021, 27, 5289-5298.	7.0	39
12	Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science, 2020, 370, 1328-1334.	12.6	273
13	Impact of Cysteine Residues on MHC Binding Predictions and Recognition by Tumor-Reactive T Cells. Journal of Immunology, 2020, 205, 539-549.	0.8	14
14	Antigen Experienced T Cells from Peripheral Blood Recognize p53 Neoantigens. Clinical Cancer Research, 2020, 26, 1267-1276.	7.0	69
15	mRNA vaccine–induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. Journal of Clinical Investigation, 2020, 130, 5976-5988.	8.2	218
16	Immunology of Melanoma. , 2020, , 41-72.		0
17	Single-Cell Transcriptome Analysis Reveals Gene Signatures Associated with T-cell Persistence Following Adoptive Cell Therapy. Cancer Immunology Research, 2019, 7, 1824-1836.	3.4	40
18	Memory T cells targeting oncogenic mutations detected in peripheral blood of epithelial cancer patients. Nature Communications, 2019, 10, 449.	12.8	118

#	Article	IF	CITATIONS
19	Immunologic Recognition of a Shared p53 Mutated Neoantigen in a Patient with Metastatic Colorectal Cancer. Cancer Immunology Research, 2019, 7, 534-543.	3.4	100
20	Unique Neoantigens Arise from Somatic Mutations in Patients with Gastrointestinal Cancers. Cancer Discovery, 2019, 9, 1022-1035.	9.4	184
21	Pilot Trial of Adoptive Transfer of Chimeric Antigen Receptor–transduced T Cells Targeting EGFRvIII in Patients With Glioblastoma. Journal of Immunotherapy, 2019, 42, 126-135.	2.4	231
22	Tumor-infiltrating human CD4 ⁺ regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity. Science Immunology, 2019, 4, .	11.9	152
23	Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. Journal of Clinical Investigation, 2019, 129, 1109-1114.	8.2	193
24	Recognition of human gastrointestinal cancer neoantigens by circulating PD-1+ lymphocytes. Journal of Clinical Investigation, 2019, 129, 4992-5004.	8.2	107
25	Immunology of Melanoma. , 2019, , 1-32.		0
26	An Efficient Single-Cell RNA-Seq Approach to Identify Neoantigen-Specific T Cell Receptors. Molecular Therapy, 2018, 26, 379-389.	8.2	78
27	Enhanced detection of neoantigen-reactive T cells targeting unique and shared oncogenes for personalized cancer immunotherapy. JCl Insight, 2018, 3, .	5.0	168
28	Predicting T cell recognition of MHC class I restricted neoepitopes. Oncolmmunology, 2018, 7, e1492508.	4.6	82
29	T-cell Responses to <i>TP53</i> "Hotspot―Mutations and Unique Neoantigens Expressed by Human Ovarian Cancers. Clinical Cancer Research, 2018, 24, 5562-5573.	7.0	114
30	Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nature Medicine, 2018, 24, 724-730.	30.7	637
31	'Final common pathway' of human cancer immunotherapy: targeting random somatic mutations. Nature Immunology, 2017, 18, 255-262.	14.5	361
32	Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science, 2017, 356, 200-205.	12.6	327
33	Tumor-Infiltrating Lymphocyte Therapy and Neoantigens. Cancer Journal (Sudbury, Mass), 2017, 23, 138-143.	2.0	30
34	Characterization of an Immunogenic Mutation in a Patient with Metastatic Triple-Negative Breast Cancer. Clinical Cancer Research, 2017, 23, 4347-4353.	7.0	26
35	Identification of essential genes for cancer immunotherapy. Nature, 2017, 548, 537-542.	27.8	668
36	Isolation of T-Cell Receptors Specifically Reactive with Mutated Tumor-Associated Antigens from Tumor-Infiltrating Lymphocytes Based on CD137 Expression. Clinical Cancer Research, 2017, 23, 2491-2505.	7.0	158

#	Article	IF	CITATIONS
37	Treatment of Patients With Metastatic Cancer Using a Major Histocompatibility Complex Class Il–Restricted T-Cell Receptor Targeting the Cancer Germline Antigen MAGE-A3. Journal of Clinical Oncology, 2017, 35, 3322-3329.	1.6	204
38	T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer. New England Journal of Medicine, 2016, 375, 2255-2262.	27.0	1,033
39	Targeting neoantigens for cancer immunotherapy: Table 1 International Immunology, 2016, 28, 365-370.	4.0	42
40	Isolation and Characterization of an HLA-DPB1*04:01-restricted MAGE-A3 T-Cell Receptor for Cancer Immunotherapy. Journal of Immunotherapy, 2016, 39, 191-201.	2.4	27
41	Durable Complete Response from Metastatic Melanoma after Transfer of Autologous T Cells Recognizing 10 Mutated Tumor Antigens. Cancer Immunology Research, 2016, 4, 669-678.	3.4	117
42	Tumor- and Neoantigen-Reactive T-cell Receptors Can Be Identified Based on Their Frequency in Fresh Tumor. Cancer Immunology Research, 2016, 4, 734-743.	3.4	163
43	Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nature Medicine, 2016, 22, 433-438.	30.7	721
44	Stable, Nonviral Expression of Mutated Tumor Neoantigen-specific T-cell Receptors Using the Sleeping Beauty Transposon/Transposase System. Molecular Therapy, 2016, 24, 1078-1089.	8.2	51
45	Cancer immunotherapy targeting neoantigens. Seminars in Immunology, 2016, 28, 22-27.	5.6	199
46	T-Cell Receptor–Transduced T Cells. Cancer Journal (Sudbury, Mass), 2015, 21, 480-485.	2.0	5
47	Unique neoantigens expressed by melanomas and common epithelial cancers presented by multiple HLA alleles can be efficiently identified utilizing peptide prediction algorithms. , 2015, 3, .		Ο
48	lsolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. Journal of Clinical Investigation, 2015, 125, 3981-3991.	8.2	328
49	A Pilot Trial Using Lymphocytes Genetically Engineered with an NY-ESO-1–Reactive T-cell Receptor: Long-term Follow-up and Correlates with Response. Clinical Cancer Research, 2015, 21, 1019-1027.	7.0	677
50	Immunogenicity of somatic mutations in human gastrointestinal cancers. Science, 2015, 350, 1387-1390.	12.6	639
51	PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. Journal of Clinical Investigation, 2014, 124, 2246-2259.	8.2	892
52	Longitudinal Study of Recurrent Metastatic Melanoma Cell Lines Underscores the Individuality of Cancer Biology. Journal of Investigative Dermatology, 2014, 134, 1389-1396.	0.7	3
53	Cancer Immunotherapy Based on Mutation-Specific CD4+ T Cells in a Patient with Epithelial Cancer. Science, 2014, 344, 641-645.	12.6	1,460
54	Tumor-Reactive CD8+ T Cells in Metastatic Gastrointestinal Cancer Refractory to Chemotherapy. Clinical Cancer Research, 2014, 20, 331-343.	7.0	55

#	Article	IF	CITATIONS
55	Efficient Identification of Mutated Cancer Antigens Recognized by T Cells Associated with Durable Tumor Regressions. Clinical Cancer Research, 2014, 20, 3401-3410.	7.0	364
56	Expression of New York esophageal squamous cell carcinoma-1 in primary and metastatic melanoma. Human Pathology, 2014, 45, 259-267.	2.0	30
57	Isolation of T cell receptors specifically reactive with mutated tumor associated antigens. , 2014, 2, .		1
58	Antimelanoma CTL recognizes peptides derived from an ORF transcribed from the antisense strand of the 3′ untranslated region of TRIT1. Molecular Therapy - Oncolytics, 2014, 1, 14009.	4.4	2
59	Mutated PPP1R3B Is Recognized by T Cells Used To Treat a Melanoma Patient Who Experienced a Durable Complete Tumor Regression. Journal of Immunology, 2013, 190, 6034-6042.	0.8	145
60	Helping Tumor Cells To Die. Journal of Immunology, 2013, 190, 1897-1898.	0.8	0
61	Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nature Medicine, 2013, 19, 747-752.	30.7	979
62	Preclinical Evaluation Of Engineered T Cells In Multiple Myeloma: Uncovering a Mechanism Of Immune Escape. Blood, 2013, 122, 4205-4205.	1.4	0
63	TIL therapy broadens the tumor-reactive CD8 ⁺ T cell compartment in melanoma patients. Oncolmmunology, 2012, 1, 409-418.	4.6	171
64	Durable Complete Responses in Heavily Pretreated Patients with Metastatic Melanoma Using T-Cell Transfer Immunotherapy. Clinical Cancer Research, 2011, 17, 4550-4557.	7.0	1,823
65	Tumor Regression in Patients With Metastatic Synovial Cell Sarcoma and Melanoma Using Genetically Engineered Lymphocytes Reactive With NY-ESO-1. Journal of Clinical Oncology, 2011, 29, 917-924.	1.6	1,427
66	T Cells Targeting Carcinoembryonic Antigen Can Mediate Regression of Metastatic Colorectal Cancer but Induce Severe Transient Colitis. Molecular Therapy, 2011, 19, 620-626.	8.2	857
67	Recognition of NY-ESO-1+ tumor cells by engineered lymphocytes is enhanced by improved vector design and epigenetic modulation of tumor antigen expression. Cancer Immunology, Immunotherapy, 2009, 58, 383-394.	4.2	80
68	Single and Dual Amino Acid Substitutions in TCR CDRs Can Enhance Antigen-Specific T Cell Functions. Journal of Immunology, 2008, 180, 6116-6131.	0.8	319
69	Adoptive Cell Therapy for Patients With Metastatic Melanoma: Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens. Journal of Clinical Oncology, 2008, 26, 5233-5239.	1.6	1,210
70	Minimally Cultured Tumor-infiltrating Lymphocytes Display Optimal Characteristics for Adoptive Cell Therapy. Journal of Immunotherapy, 2008, 31, 742-751.	2.4	236
71	Enhanced Antitumor Activity of T Cells Engineered to Express T-Cell Receptors with a Second Disulfide Bond. Cancer Research, 2007, 67, 3898-3903.	0.9	315
72	Persistence of Multiple Tumor-Specific T-Cell Clones Is Associated with Complete Tumor Regression in a Melanoma Patient Receiving Adoptive Cell Transfer Therapy. Journal of Immunotherapy, 2005, 28, 53-62.	2.4	198

#	Article	IF	CITATIONS
73	Cutting Edge: Persistence of Transferred Lymphocyte Clonotypes Correlates with Cancer Regression in Patients Receiving Cell Transfer Therapy. Journal of Immunology, 2004, 173, 7125-7130.	0.8	442
74	High Efficiency TCR Gene Transfer into Primary Human Lymphocytes Affords Avid Recognition of Melanoma Tumor Antigen Glycoprotein 100 and Does Not Alter the Recognition of Autologous Melanoma Antigens. Journal of Immunology, 2003, 171, 3287-3295.	0.8	219
75	Multiple HLA Class II-Restricted Melanocyte Differentiation Antigens Are Recognized by Tumor-Infiltrating Lymphocytes from a Patient with Melanoma. Journal of Immunology, 2002, 169, 6036-6047.	0.8	73
76	Cancer Regression and Autoimmunity in Patients After Clonal Repopulation with Antitumor Lymphocytes. Science, 2002, 298, 850-854.	12.6	2,598
77	A listing of human tumor antigens recognized by T cells. Cancer Immunology, Immunotherapy, 2001, 50, 3-15.	4.2	426
78	N-linked carbohydrates in tyrosinase are required for its recognition by human MHC class II-restricted CD4+ T cells. European Journal of Immunology, 2001, 31, 2690-2701.	2.9	20
79	Stabilization of β-Catenin by Genetic Defects in Melanoma Cell Lines. Science, 1997, 275, 1790-1792.	12.6	1,181
80	Internal Checkpoint Regulates T Cell Neoantigen Reactivity and Susceptibility to PD1 Blockade. SSRN Electronic Journal, 0, , .	0.4	3