
Alejandro Chavez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/299786/publications.pdf Version: 2024-02-01

ALEIANDRO CHAVEZ

#	Article	IF	CITATIONS
1	Quantifying protein abundance on single cells using split-pool sequencing on DNA-barcoded antibodies for diagnostic applications. Scientific Reports, 2022, 12, 884.	3.3	3
2	Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19. Nature Communications, 2022, 13, 1891.	12.8	45
3	An antibody class with a common CDRH3 motif broadly neutralizes sarbecoviruses. Science Translational Medicine, 2022, 14, eabn6859.	12.4	31
4	Lead compounds for the development of SARS-CoV-2 3CL protease inhibitors. Nature Communications, 2021, 12, 2016.	12.8	65
5	Inhibitors of Coronavirus 3CL Proteases Protect Cells from Protease-Mediated Cytotoxicity. Journal of Virology, 2021, 95, e0237420.	3.4	27
6	Synthetic immunomodulation with a CRISPR super-repressor in vivo. Nature Cell Biology, 2020, 22, 1143-1154.	10.3	27
7	Reduced apoptosis in Chinese hamster ovary cells via optimized CRISPR interference. Biotechnology and Bioengineering, 2019, 116, 1813-1819.	3.3	39
8	Daisy-chain gene drives for the alteration of local populations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8275-8282.	7.1	154
9	Design, execution, and analysis of CRISPR–Cas9-based deletions and genetic interaction networks in the fungal pathogen Candida albicans. Nature Protocols, 2019, 14, 955-975.	12.0	25
10	A CRISPR Interference Platform for Efficient Genetic Repression in <i>Candida albicans</i> . MSphere, 2019, 4, .	2.9	49
11	An Integrated Genome-wide CRISPRa Approach to Functionalize IncRNAs in Drug Resistance. Cell, 2018, 173, 649-664.e20.	28.9	238
12	CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms. Nature Reviews Microbiology, 2018, 16, 333-339.	28.6	88
13	Precise Cas9 targeting enables genomic mutation prevention. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3669-3673.	7.1	28
14	A CRISPR–Cas9-based gene drive platform for genetic interaction analysis in Candida albicans. Nature Microbiology, 2018, 3, 73-82.	13.3	135
15	CRISPR Guide RNA Cloning for Mammalian Systems. Journal of Visualized Experiments, 2018, , .	0.3	6
16	Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks. Molecular Cell, 2018, 71, 42-55.e8.	9.7	112
17	An enhanced CRISPR repressor for targeted mammalian gene regulation. Nature Methods, 2018, 15, 611-616.	19.0	361
18	Enabling multiplexed testing of pooled donor cells through whole-genome sequencing. Genome Medicine, 2018, 10, 31.	8.2	10

ALEJANDRO CHAVEZ

#	Article	IF	CITATIONS
19	sgRNA Scorer 2.0: A Species-Independent Model To Predict CRISPR/Cas9 Activity. ACS Synthetic Biology, 2017, 6, 902-904.	3.8	189
20	Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nature Microbiology, 2017, 2, 16274.	13.3	368
21	Comparison of Cas9 activators in multiple species. Nature Methods, 2016, 13, 563-567.	19.0	438
22	Safeguarding CRISPR-Cas9 gene drives in yeast. Nature Biotechnology, 2015, 33, 1250-1255.	17.5	291
23	Highly efficient Cas9-mediated transcriptional programming. Nature Methods, 2015, 12, 326-328.	19.0	1,245
24	Cas9 gRNA engineering for genome editing, activation and repression. Nature Methods, 2015, 12, 1051-1054.	19.0	272
25	Clonal Hematopoiesis with Somatic Mutations Is a Common, Age-Related Condition Associated with Adverse Outcomes. Blood, 2014, 124, 840-840.	1.4	1