
David H Raulet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2997421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nature Reviews Immunology, 2023, 23, 90-105.	10.6	110
2	Synergy of a STING agonist and an IL-2 superkine in cancer immunotherapy against MHC l–deficient and MHC l ⁺ tumors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200568119.	3.3	20
3	Tumor-induced disruption of the blood-brain barrier promotes host death. Developmental Cell, 2021, 56, 2712-2721.e4.	3.1	28
4	Millikelvin-resolved ambient thermography. Science Advances, 2020, 6, .	4.7	26
5	Killer cells add fire to fuel immunotherapy. Science, 2020, 368, 943-944.	6.0	11
6	NK cells mediate clearance of CD8 ⁺ T cell–resistant tumors in response to STING agonists. Science Immunology, 2020, 5, .	5.6	128
7	SLC19A1 transports immunoreactive cyclic dinucleotides. Nature, 2019, 573, 434-438.	13.7	230
8	The mechanistic study behind suppression of GVHD while retaining GVL activities by myeloid-derived suppressor cells. Leukemia, 2019, 33, 2078-2089.	3.3	36
9	Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging. JCI Insight, 2019, 4, .	2.3	90
10	Tumor-Derived cGAMP Triggers a STING-Mediated Interferon Response in Non-tumor Cells to Activate the NK Cell Response. Immunity, 2018, 49, 754-763.e4.	6.6	370
11	Tumor-derived CSF-1 induces the NKG2D ligand RAE-1δ on tumor-infiltrating macrophages. ELife, 2018, 7, .	2.8	11
12	Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. Journal of Clinical Investigation, 2018, 128, 4654-4668.	3.9	591
13	Listening to each other: Infectious disease and cancer immunology. Science Immunology, 2017, 2, .	5.6	25
14	Dysregulated cellular functions and cell stress pathways provide critical cues for activating and targeting natural killer cells to transformed and infected cells. Immunological Reviews, 2017, 280, 93-101.	2.8	55
15	MICA-Expressing Monocytes Enhance Natural Killer Cell Fc Receptor-Mediated Antitumor Functions. Cancer Immunology Research, 2017, 5, 778-789.	1.6	12
16	Natural-Killer-like B Cells Display the Phenotypic and Functional Characteristics of Conventional B Cells. Immunity, 2017, 47, 199-200.	6.6	16
17	Endothelial cells express NKG2D ligands and desensitize antitumor NK responses. ELife, 2017, 6, .	2.8	71
18	Bacterial Manipulation of NK Cell Regulatory Activity Increases Susceptibility to Listeria monocytogenes Infection. PLoS Pathogens, 2016, 12, e1005708.	2.1	54

#	Article	IF	CITATIONS
19	Neutrophils Suppress Intraluminal NK Cell–Mediated Tumor Cell Clearance and Enhance Extravasation of Disseminated Carcinoma Cells. Cancer Discovery, 2016, 6, 630-649.	7.7	369
20	An RNA-Based Fluorescent Biosensor for High-Throughput Analysis of the cGAS-cGAMP-STING Pathway. Cell Chemical Biology, 2016, 23, 1539-1549.	2.5	56
21	Differential Role of Hematopoietic and Nonhematopoietic Cell Types in the Regulation of NK Cell Tolerance and Responsiveness. Journal of Immunology, 2016, 197, 4127-4136.	0.4	5
22	Immunosurveillance and immunotherapy of tumors by innate immune cells. Current Opinion in Immunology, 2016, 38, 52-58.	2.4	85
23	Cytokine therapy restores antitumor responses of NK cells rendered anergic in MHC I-deficient tumors. Oncolmmunology, 2016, 5, e1002725.	2.1	10
24	A Herpesviral induction of RAE-1 NKG2D ligand expression occurs through release of HDAC mediated repression. ELife, 2016, 5, .	2.8	24
25	NKG2D expression by CD8+ T cells contributes to GVHD and GVT effects in a murine model of allogeneic HSCT. Blood, 2015, 125, 3655-3663.	0.6	40
26	A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection. Science, 2015, 348, 136-139.	6.0	221
27	Bone Marrow Cell Rejection, MHC, NK Cells, and Missing Self Recognition: Ain't That Peculiar (with) Tj ETÇ	q1 1 0.784 0.4	314 _, rgBT /O
28	Cytokine treatment in cancer immunotherapy. Oncotarget, 2015, 6, 19346-19347.	0.8	17
29	A forward genetic screen reveals novel independent regulators of ULBP1, an activating ligand for natural killer cells. ELife, 2015, 4, .	2.8	36
30	Immunosurveillance of senescent cancer cells by natural killer cells. OncoImmunology, 2014, 3, e27616.	2.1	26
31	Recognition of Tumors by the Innate Immune System and Natural Killer Cells. Advances in Immunology, 2014, 122, 91-128.	1.1	296
32	NK cell self tolerance, responsiveness and missing self recognition. Seminars in Immunology, 2014, 26, 138-144.	2.7	160
33	RAE1 Ligands for the NKG2D Receptor Are Regulated by STING-Dependent DNA Sensor Pathways in Lymphoma. Cancer Research, 2014, 74, 2193-2203.	0.4	127
34	Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. Journal of Clinical Investigation, 2014, 124, 4781-4794.	3.9	161
35	A simple and effective method for differentiating GFP and YFP by flow cytometry using the violet laser. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83, 973-974.	1.1	10
36	Evidence for Natural Killer Cell Memory. Current Biology, 2013, 23, R817-R820.	1.8	39

#	Article	IF	CITATIONS
37	A selective role of NKG2D in inflammatory and autoimmune diseases. Clinical Immunology, 2013, 149, 432-439.	1.4	38
38	ATM-dependent spontaneous regression of early Eμ-myc–induced murine B-cell leukemia depends on natural killer and T cells. Blood, 2013, 121, 2512-2521.	0.6	56
39	Regulation of Ligands for the NKG2D Activating Receptor. Annual Review of Immunology, 2013, 31, 413-441.	9.5	705
40	p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. Journal of Experimental Medicine, 2013, 210, 2057-2069.	4.2	314
41	Immune Surveillance of Unhealthy Cells by Natural Killer Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 249-257.	2.0	47
42	HLA Reduces Killer Cell Ig-like Receptor Expression Level and Frequency in a Humanized Mouse Model. Journal of Immunology, 2013, 190, 2880-2885.	0.4	15
43	Characterization of a novel NKC2D and NKp46 double-mutant mouse reveals subtle variations in the NK cell repertoire. Blood, 2013, 121, 5025-5033.	0.6	31
44	Transient NKG2D Blockade Attenuates Graft-Versus-Host Disease While Preserving Graft-Versus-Leukemia Effects. Blood, 2013, 122, 3242-3242.	0.6	1
45	NKG2D Mediates NK Cell Hyperresponsiveness and Influenza-Induced Pathologies in a Mouse Model of Chronic Obstructive Pulmonary Disease. Journal of Immunology, 2012, 188, 4468-4475.	0.4	45
46	RAE-1 ligands for the NKG2D receptor are regulated by E2F transcription factors, which control cell cycle entry. Journal of Experimental Medicine, 2012, 209, 2409-2422.	4.2	101
47	Impaired natural killer cell self-education and "missing-self―responses in Ly49-deficient mice. Blood, 2012, 120, 592-602.	0.6	58
48	Infection-Induced Regulation of Natural Killer Cells by Macrophages and Collagen at the Lymph Node Subcapsular Sinus. Cell Reports, 2012, 2, 124-135.	2.9	51
49	Innate or Adaptive Immunity? The Example of Natural Killer Cells. Science, 2011, 331, 44-49.	6.0	2,234
50	Immune Activation Resulting From NKG2D/Ligand Interaction Promotes Atherosclerosis. Circulation, 2011, 124, 2933-2943.	1.6	49
51	Expression of the RAE-1 Family of Stimulatory NK-Cell Ligands Requires Activation of the PI3K Pathway during Viral Infection and Transformation. PLoS Pathogens, 2011, 7, e1002265.	2.1	47
52	Chemotherapy-Induced Genotoxic Stress Promotes Sensitivity to Natural Killer Cell Cytotoxicity by Enabling Missing-Self Recognition. Cancer Research, 2010, 70, 7102-7113.	0.4	94
53	Stress-Regulated Targeting of the NKG2D Ligand Mult1 by a Membrane-Associated RING-CH Family E3 Ligase. Journal of Immunology, 2010, 185, 5369-5376.	0.4	50
54	Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment. Journal of Experimental Medicine, 2010, 207, 2065-2072.	4.2	211

#	Article	IF	CITATIONS
55	Endoplasmic Reticulum Aminopeptidase Associated with Antigen Processing Defines the Composition and Structure of MHC Class I Peptide Repertoire in Normal and Virus-Infected Cells. Journal of Immunology, 2010, 184, 3033-3042.	0.4	79
56	Posttranslational regulation of the NKG2D ligand Mult1 in response to cell stress. Journal of Experimental Medicine, 2009, 206, 287-298.	4.2	83
57	NKG2A Inhibits Invariant NKT Cell Activation in Hepatic Injury. Journal of Immunology, 2009, 182, 250-258.	0.4	39
58	Costimulation of Dendritic Epidermal γδT Cells by a New NKG2D Ligand Expressed Specifically in the Skin. Journal of Immunology, 2009, 182, 4557-4564.	0.4	95
59	NK Cell Responsiveness Is Tuned Commensurate with the Number of Inhibitory Receptors for Self-MHC Class I: The Rheostat Model. Journal of Immunology, 2009, 182, 4572-4580.	0.4	234
60	Recombination Signal Sequence-Associated Restriction on TCRδ Gene Rearrangement Affects the Development of Tissue-Specific γδT Cells. Journal of Immunology, 2009, 183, 4931-4939.	0.4	9
61	Natural Killer Cells: Remembrances of Things Past. Current Biology, 2009, 19, R294-R296.	1.8	8
62	Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nature Reviews Immunology, 2009, 9, 568-580.	10.6	333
63	Posttranslational regulation of the NKG2D ligand Mult1 in response to cell stress. Journal of Cell Biology, 2009, 184, i7-i7.	2.3	1
64	Regulation of NK cell responsiveness to achieve selfâ€ŧolerance and maximal responses to diseased target cells. Immunological Reviews, 2008, 224, 85-97.	2.8	115
65	NKG2D-Deficient Mice Are Defective in Tumor Surveillance in Models of Spontaneous Malignancy. Immunity, 2008, 28, 571-580.	6.6	721
66	NKG2D-Deficient Mice Are Defective in Tumor Surveillance in Models of Spontaneous Malignancy. Immunity, 2008, 28, 723.	6.6	4
67	Gene placement and competition control T cell receptor γ variable region gene rearrangement. Journal of Experimental Medicine, 2008, 205, 929-938.	4.2	19
68	Upregulation of CD94/NKG2A receptors and Qa-1b ligand during murine cytomegalovirus infection of salivary glands. Journal of General Virology, 2007, 88, 1440-1445.	1.3	13
69	The Role of NKG2D Signaling in Inhibition of Cytotoxic T-Lymphocyte Lysis by the Murine Cytomegalovirus Immunoevasin <i>m152</i> /gp40. Journal of Virology, 2007, 81, 12564-12571.	1.5	9
70	DNA Mismanagement Leads to Immune System Oversight. Cell, 2007, 131, 836-838.	13.5	18
71	The combined actions of NK and T lymphocytes are necessary to reject an EGFP+ mesenchymal tumor through mechanisms dependent on NKG2D and IFNÎ3. International Journal of Cancer, 2007, 121, 1282-1295.	2.3	16
72	Development and selection of $\hat{I}^{3}\hat{I}$ T cells. Immunological Reviews, 2007, 215, 15-31.	2.8	152

#	Article	IF	CITATIONS
73	Stromal-cell regulation of natural killer cell differentiation. Journal of Molecular Medicine, 2007, 85, 1047-1056.	1.7	32
74	Missing self recognition and self tolerance of natural killer (NK) cells. Seminars in Immunology, 2006, 18, 145-150.	2.7	148
75	Multiplicity and plasticity of natural killer cell signaling pathways. Blood, 2006, 107, 2364-2372.	0.6	83
76	Activation and self-tolerance of natural killer cells. Immunological Reviews, 2006, 214, 130-142.	2.8	185
77	Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases. Nature Immunology, 2006, 7, 747-754.	7.0	127
78	Self-tolerance of natural killer cells. Nature Reviews Immunology, 2006, 6, 520-531.	10.6	498
79	The DNA damage response, immunity and cancer. Seminars in Cancer Biology, 2006, 16, 344-347.	4.3	118
80	The DNA Damage Response Arouses the Immune System: Figure 1 Cancer Research, 2006, 66, 3959-3962.	0.4	162
81	A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood, 2005, 105, 4416-4423.	0.6	478
82	IFN-Â-mediated negative feedback regulation of NKT-cell function by CD94/NKG2. Blood, 2005, 106, 184-192.	0.6	56
83	The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature, 2005, 436, 1186-1190.	13.7	1,168
84	Amelioration of acute graft-versus-host disease by NKG2A engagement on donor T cells. European Journal of Immunology, 2005, 35, 2358-2366.	1.6	9
85	Inhibition of MHC Class I Is a Virulence Factor in Herpes Simplex Virus Infection of Mice. PLoS Pathogens, 2005, 1, e7.	2.1	34
86	Turnover and Proliferation of NK Cells in Steady State and Lymphopenic Conditions. Journal of Immunology, 2004, 172, 864-870.	0.4	148
87	The Role of Innate Immunity in Autoimmunity. Journal of Experimental Medicine, 2004, 200, 1527-1531.	4.2	37
88	Genomic <i>Ly49A</i> Transgenes: Basis of Variegated <i>Ly49A</i> Gene Expression and Identification of a Critical Regulatory Element. Journal of Immunology, 2004, 172, 1074-1082.	0.4	33
89	Murine Cytomegalovirus Interference with Antigen Presentation Has Little Effect on the Size or the Effector Memory Phenotype of the CD8 T Cell Response. Journal of Immunology, 2004, 172, 6944-6953.	0.4	73
90	The genomic arrangement of T cell receptor variable genes is a determinant of the developmental rearrangement pattern. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 260-265.	3.3	30

#	Article	IF	CITATIONS
91	Expansion and Function of CD8+ T Cells Expressing Ly49 Inhibitory Receptors Specific for MHC Class I Molecules. Journal of Immunology, 2004, 173, 3773-3782.	0.4	33
92	Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3527-3532.	3.3	178
93	Interplay of natural killer cells and their receptors with the adaptive immune response. Nature Immunology, 2004, 5, 996-1002.	7.0	373
94	Comparative analysis of human NK cell activation induced by NKG2D and natural cytotoxicity receptors. European Journal of Immunology, 2004, 34, 961-971.	1.6	134
95	Positive Selection of Dendritic Epidermal Î ³ δT Cell Precursors in the Fetal Thymus Determines Expression of Skin-Homing Receptors. Immunity, 2004, 21, 121-131.	6.6	102
96	Coordinated Induction by IL15 of a TCR-Independent NKG2D Signaling Pathway Converts CTL into Lymphokine-Activated Killer Cells in Celiac Disease. Immunity, 2004, 21, 357-366.	6.6	723
97	A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity. European Journal of Immunology, 2003, 33, 381-391.	1.6	147
98	Contrasting roles of DAP10 and KARAP/DAP12 signaling adaptors in activation of the RBL-2H3 leukemic mast cell line. European Journal of Immunology, 2003, 33, 3514-3522.	1.6	18
99	Innate immune recognition by stimulatory immunoreceptors. Current Opinion in Immunology, 2003, 15, 37-44.	2.4	88
100	Roles of the NKG2D immunoreceptor and its ligands. Nature Reviews Immunology, 2003, 3, 781-790.	10.6	1,161
101	NK Cells Respond to Pulmonary Infection with <i>Mycobacterium tuberculosis</i> , but Play a Minimal Role in Protection. Journal of Immunology, 2003, 171, 6039-6045.	0.4	151
102	Blastocyst MHC, a Putative Murine Homologue of HLA-G, Protects TAP-Deficient Tumor Cells from Natural Killer Cell-Mediated Rejection In Vivo. Journal of Immunology, 2003, 171, 1715-1721.	0.4	30
103	Implications of CD94 deficiency and monoallelic NKG2A expression for natural killer cell development and repertoire formation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 868-873.	3.3	79
104	Viral and Bacterial Infections Induce Expression of Multiple NK Cell Receptors in Responding CD8+ T Cells. Journal of Immunology, 2002, 169, 1444-1452.	0.4	151
105	Cutting Edge: Tumor Rejection Mediated by NKG2D Receptor-Ligand Interaction Is Dependent upon Perforin. Journal of Immunology, 2002, 169, 5377-5381.	0.4	156
106	Orderly and Nonstochastic Acquisition of CD94/NKG2 Receptors by Developing NK Cells Derived from Embryonic Stem Cells In Vitro. Journal of Immunology, 2002, 168, 4980-4987.	0.4	42
107	The lymphoproliferative defect in CTLA-4–deficient mice is ameliorated by an inhibitory NK cell receptor. Blood, 2002, 99, 4509-4516.	0.6	10
108	Redundant and Unique Roles of Two Enhancer Elements in the TCRÎ ³ Locus in Gene Regulation and Î ³ δT Cell Development. Immunity, 2002, 16, 453-463.	6.6	55

#	Article	IF	CITATIONS
109	The Role of the NKG2D Immunoreceptor in Immune Cell Activation and Natural Killing. Immunity, 2002, 17, 19-29.	6.6	578
110	NK cells developing in vitro from fetal mouse progenitors express at least one member of the Ly49 family that is acquired in a time-dependent and stochastic manner independently of CD94 and NKG2. European Journal of Immunology, 2002, 32, 868.	1.6	34
111	The innate immune response to tumors and its role in the induction of T-cell immunity. Immunological Reviews, 2002, 188, 9-21.	2.8	194
112	Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nature Immunology, 2002, 3, 1142-1149.	7.0	408
113	Lymphocyte development. Current Opinion in Immunology, 2001, 13, 163-165.	2.4	1
114	Expression and function of NK cell receptors in CD8+ T cells. Current Opinion in Immunology, 2001, 13, 465-470.	2.4	155
115	Strategies for target cell recognition by natural killer cells. Immunological Reviews, 2001, 181, 170-184.	2.8	192
116	MHC-dependent shaping of the inhibitory Ly49 receptor repertoire on NK cells: evidence for a regulated sequential model. European Journal of Immunology, 2001, 31, 3370-3379.	1.6	40
117	Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature, 2001, 413, 165-171.	13.7	935
118	Expression of Natural Killer Receptor Alleles at Different Ly49 Loci Occurs Independently and Is Regulated by Major Histocompatibility Complex Class I Molecules. Journal of Experimental Medicine, 2001, 193, 307-316.	4.2	31
119	Cumulative Inhibition of NK Cells and T Cells Resulting from Engagement of Multiple Inhibitory Ly49 Receptors. Journal of Immunology, 2001, 166, 3002-3007.	0.4	28
120	Evidence That Î ³ Î′ versus αβ T Cell Fate Determination Is Initiated Independently of T Cell Receptor Signaling. Journal of Experimental Medicine, 2001, 193, 689-698.	4.2	102
121	Viral Infections Induce Abundant Numbers of Senescent CD8 T Cells. Journal of Immunology, 2001, 167, 4838-4843.	0.4	222
122	REGULATION OF THENATURALKILLERCELLRECEPTORREPERTOIRE. Annual Review of Immunology, 2001, 19, 291-330.	9.5	471
123	Memory CD8 T lymphocytes express inhibitory MHC-specific Ly49 receptors. European Journal of Immunology, 2000, 30, 236-244.	1.6	121
124	NK cell expression of the killer cell lectin-like receptor G1 (KLRG1), the mouse homolog of MAFA, is modulated by MHC class I molecules. European Journal of Immunology, 2000, 30, 920-930.	1.6	86
125	Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunology, 2000, 1, 119-126.	7.0	773
126	Analysis of Qa-1bPeptide Binding Specificity and the Capacity of Cd94/Nkg2a to Discriminate between Qa-1–Peptide Complexes. Journal of Experimental Medicine, 2000, 192, 613-624.	4.2	100

#	Article	IF	CITATIONS
127	Generation of Short-Term Murine Natural Killer Cell Clones to Analyze Ly49 Gene Expression. , 2000, 121, 5-12.		3
128	Clonal Acquisition of Inhibitory Ly49 Receptors on Developing NK Cells Is Successively Restricted and Regulated by Stromal Class I MHC. Immunity, 2000, 13, 143-153.	6.6	114
129	NK1.1+ T Cells in the Liver Arise in the Thymus and Are Selected by Interactions with Class I Molecules on CD4+CD8+ Cells. Journal of Immunology, 2000, 164, 2412-2418.	0.4	182
130	Near-field Second Harmonic Imaging of Granular Membrane Structures in Natural Killer Cells. Journal of Physical Chemistry B, 2000, 104, 5217-5220.	1.2	21
131	Memory CD8 T lymphocytes express inhibitory MHC-specific Ly49 receptors. European Journal of Immunology, 2000, 30, 236-244.	1.6	2
132	Does a Low Level of Expression of HLA Molecules Engender Autoimmunity?. New England Journal of Medicine, 1999, 340, 314-315.	13.9	7
133	A Novel Element Upstream of the Vγ2 Gene in the Murine T Cell Receptor γ Locus Cooperates with the 3′ Enhancer to Act as a Locus Control Region. Journal of Experimental Medicine, 1999, 190, 669-680.	4.2	28
134	Recognition of the Class Ib Molecule Qa-1b by Putative Activating Receptors Cd94/Nkg2c and Cd94/Nkg2e on Mouse Natural Killer Cells. Journal of Experimental Medicine, 1999, 190, 1801-1812.	4.2	203
135	Defective Development of γ/δT Cells in Interleukin 7 Receptor–Deficient Mice Is Due to Impaired Expression of T Cell Receptor γ Genes. Journal of Experimental Medicine, 1999, 190, 973-982.	4.2	61
136	A New Monoclonal Antibody Reactive with Several Ly49 NK Cell Receptors Mediates Redirected Lysis of Target Cells. Hybridoma, 1999, 18, 359-366.	0.9	11
137	Development and tolerance of natural killer cells. Current Opinion in Immunology, 1999, 11, 129-134.	2.4	74
138	Natural killer cells: Stress out, turn on, tune in. Current Biology, 1999, 9, R851-R853.	1.8	24
139	Direct Assessment of MHC Class I Binding by Seven Ly49 Inhibitory NK Cell Receptors. Immunity, 1999, 11, 67-77.	6.6	278
140	2F1 antigen, the mouse homolog of the rat "mast cell function-associated antigenâ€; is a lectin-like type II transmembrane receptor expressed by natural killer cells. European Journal of Immunology, 1998, 28, 4409-4417.	1.6	71
141	The Developmental Fate of T Cells Is Critically Influenced by TCRÎ ³ δ Expression. Immunity, 1998, 8, 427-438.	6.6	71
142	T Cell Receptor γ Gene Regulatory Sequences Prevent the Function of a Novel TCRγ/pTα Pre–T Cell Receptor. Immunity, 1998, 8, 713-721.	6.6	35
143	Developmentally Programmed Rearrangement of T Cell Receptor Vγ Genes Is Controlled by Sequences Immediately Upstream of the Vγ Genes. Immunity, 1998, 9, 159-168.	6.6	45
144	Mouse CD94/NKG2A Is a Natural Killer Cell Receptor for the Nonclassical Major Histocompatibility Complex (MHC) Class I Molecule Qa-1b. Journal of Experimental Medicine, 1998, 188, 1841-1848.	4.2	447

#	Article	IF	CITATIONS
145	Acquisition of Ly49 Receptor Expression by Developing Natural Killer Cells. Journal of Experimental Medicine, 1998, 187, 609-618.	4.2	151
146	Ly49A Transgenic Mice Provide Evidence for a Major Histocompatibility Complex–dependent Education Process in Natural Killer Cell Development. Journal of Experimental Medicine, 1997, 185, 2079-2088.	4.2	87
147	Events that regulate differentiation of αβ TCR+and γδ TCR+T cells from a common precursor. Seminars in Immunology, 1997, 9, 171-179.	2.7	65
148	The MHC Reactivity of the T Cell Repertoire Prior to Positive and Negative Selection. Cell, 1997, 88, 627-636.	13.5	295
149	Specificity, tolerance and developmental regulation of natural killer cells defined by expression of class I-specific Ly49 receptors. Immunological Reviews, 1997, 155, 41-52.	2.8	212
150	Expression of theLy49A gene in murine natural killer cell clones is predominantly but not exclusively mono-allelic. European Journal of Immunology, 1997, 27, 2876-2884.	1.6	51
151	Cloning of a mouse homolog of CD94 extends the family of C-type lectins on murine natural killer cells. European Journal of Immunology, 1997, 27, 3236-3241.	1.6	117
152	Major histocompatibility complex genes determine natural killer cell tolerance. European Journal of Immunology, 1996, 26, 151-155.	1.6	62
153	Major histocompatibility complex class I-dependent skewing of the natural killer cell Ly49 receptor reportoire. European Journal of Immunology, 1996, 26, 2286-2292.	1.6	148
154	Recognition events that inhibit and activate natural killer cells. Current Opinion in Immunology, 1996, 8, 372-377.	2.4	52
155	Evidence that productive rearrangements of TCR γ genes influence the commitment of progenitor cells to differentiate into αβ or γδT cells. European Journal of Immunology, 1995, 25, 2706-2709.	1.6	51
156	Allelic exclusion of Ly49-family genes encoding class I MHC-specific receptors on NK cells. Nature, 1995, 376, 355-358.	13.7	182
157	The role of short homology repeats and TdT in generation of the invariant γÎ′ antigen receptor repertoire in the fetal thymus. Immunity, 1995, 3, 439-447.	6.6	61
158	Natural killer cell receptors: The offs and ons of NK cell recognition. Cell, 1995, 82, 697-700.	13.5	169
159	Inhibitory effects of class I molecules on murine NK cells: speculations on function, specificity and self-tolerance. Seminars in Immunology, 1995, 7, 103-107.	2.7	25
160	Binding of diverse peptides to MHC class I molecules inhibits target cell lysis by activated natural killer cells. Immunity, 1995, 2, 61-71.	6.6	165
161	Class I dependence of the development of CD4+ CD8- NK1.1+ thymocytes Journal of Experimental Medicine, 1994, 180, 395-399.	4.2	149
162	Multiple natural killer cell-activating signals are inhibited by major histocompatibility complex class I expression in target cells. European Journal of Immunology, 1994, 24, 1323-1331.	1.6	80

#	Article	IF	CITATIONS
163	T-Cell Immunity: How $\hat{1}^{3}\hat{1}$ T cells make a living. Current Biology, 1994, 4, 246-248.	1.8	14
164	Immunobiology of MHC Class I-Deficient Mice. , 1994, , 267-295.		0
165	Selection is not required to produce invariant T-cell receptor Î ³ -gene junctional sequences. Nature, 1993, 362, 158-160.	13.7	97
166	MHC Class I-Deficient Mice. Advances in Immunology, 1993, 55, 381-421.	1.1	105
167	Evidence for a stochastic mechanism in the differentiation of mature subsets of T lymphocytes. Cell, 1993, 73, 237-247.	13.5	217
168	CD28-induced costimulation of T helper type 2 cells mediated by induction of responsiveness to interleukin 4 Journal of Experimental Medicine, 1993, 178, 1645-1653.	4.2	107
169	Ordered rearrangement of variable region genes of the T cell receptor gamma locus correlates with transcription of the unrearranged genes Journal of Experimental Medicine, 1993, 177, 729-739.	4.2	108
170	Positive selection of V beta 8+ CD4-8- thymocytes by class I molecules expressed by hematopoietic cells Journal of Experimental Medicine, 1993, 178, 901-908.	4.2	149
171	Functionally conformed free class I heavy chains exist on the surface of beta 2 microglobulin negative cells Journal of Experimental Medicine, 1992, 176, 829-834.	4.2	144
172	CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature, 1992, 356, 607-609.	13.7	1,516
173	A sense of something missing. Nature, 1992, 358, 21-22.	13.7	34
174	Inefficient positive selection of T cells directed by haematopoietic cells. Nature, 1992, 359, 330-333.	13.7	121
175	Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature, 1991, 349, 329-331.	13.7	393
176	Control of gammadelta T-Cell Development. Immunological Reviews, 1991, 120, 185-204.	2.8	93
177	Expression of human adenosine deaminase in mice reconstituted with retrovirus-transduced hematopoietic stem cells Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 439-443.	3.3	105
178	β2-Microglobulin deficient mice lack CD4â^'8+ cytolytic T cells. Nature, 1990, 344, 742-746.	13.7	1,026
179	Selective expression of Vδ6 genes by B2A2â^' CD4â^' CDâ^' T cell receptor γ/δ thymocytes. European Journal of Immunology, 1990, 20, 41-45.	1.6	11
180	Antigens for \hat{I}^3/\hat{I} T cells. Nature, 1989, 339, 342-343.	13.7	119

#	Article	IF	CITATIONS
181	T-Cell Lineages, Repertoire Selection and Tolerance Induction. Immunological Reviews, 1988, 104, 157-182.	2.8	62
182	Tolerance, and more. Cell, 1987, 49, 153-154.	13.5	3
183	T cell gamma receptor. Immunologic Research, 1987, 6, 288-293.	1.3	0
184	Diversity, rearrangement, and expression of murine T cell gamma genes. Cell, 1986, 45, 733-742.	13.5	420
185	Developmental potential and dynamic behavior of hematopoietic stem cells. Cell, 1986, 45, 917-927.	13.5	855
186	Expression and function of interleukin-2 receptors on immature thymocytes. Nature, 1985, 314, 101-103.	13.7	223
187	Developmental regulation of T-cell receptor gene expression. Nature, 1985, 314, 103-107.	13.7	525
188	A differentiation factor required for the expression of cytotoxic T-cell function. Nature, 1982, 296, 754-757.	13.7	163
189	Binary outcomes of enhancer activity underlie stable random monoallelic expression. ELife, 0, 11, .	2.8	3