Luke J Alderwick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2997295/publications.pdf

Version: 2024-02-01

34 1,618 20 32 papers citations h-index g-index

36 36 2003 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Structural basis of inhibition of <i>Mycobacterium tuberculosis</i> DprE1 by benzothiazinone inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11354-11359.	7.1	194
2	The Mycobacterial Cell Wallâ€"Peptidoglycan and Arabinogalactan. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a021113.	6.2	168
3	Identification of a Novel Arabinofuranosyltransferase (AftA) Involved in Cell Wall Arabinan Biosynthesis in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2006, 281, 15653-15661.	3.4	143
4	Deletion of Cg-emb in Corynebacterianeae Leads to a Novel Truncated Cell Wall Arabinogalactan, whereas Inactivation of Cg-ubiA Results in an Arabinan-deficient Mutant with a Cell Wall Galactan Core. Journal of Biological Chemistry, 2005, 280, 32362-32371.	3.4	132
5	Identification of a Novel Arabinofuranosyltransferase AftB Involved in a Terminal Step of Cell Wall Arabinan Biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis. Journal of Biological Chemistry, 2007, 282, 14729-14740.	3.4	114
6	Biosynthesis of mycobacterial arabinogalactan: identification of a novel $\hat{l}\pm(1\hat{a}\dagger^2)$ arabinofuranosyltransferase. Molecular Microbiology, 2008, 69, 1191-1206.	2.5	88
7	Molecular structure of EmbR, a response element of Ser/Thr kinase signaling in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2558-2563.	7.1	76
8	Non-Replicating Mycobacterium tuberculosis Elicits a Reduced Infectivity Profile with Corresponding Modifications to the Cell Wall and Extracellular Matrix. PLoS ONE, 2014, 9, e87329.	2.5	64
9	Lipopolysaccharide structure impacts the entry kinetics of bacterial outer membrane vesicles into host cells. PLoS Pathogens, 2017, 13, e1006760.	4.7	63
10	The C-Terminal Domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC Is a Lectin-Like Carbohydrate Binding Module. PLoS Pathogens, 2011, 7, e1001299.	4.7	55
11	A truncated lipoglycan from mycobacteria with altered immunological properties. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2634-2639.	7.1	47
12	Lcp1 Is a Phosphotransferase Responsible for Ligating Arabinogalactan to Peptidoglycan in Mycobacterium tuberculosis. MBio, 2016, 7, .	4.1	42
13	Biochemical characterization of the Mycobacterium tuberculosis phosphoribosyl-1-pyrophosphate synthetase. Glycobiology, 2011, 21, 410-425.	2.5	41
14	Arabinan-deficient mutants of Corynebacterium glutamicum and the consequent flux in decaprenylmonophosphoryl-d-arabinose metabolism. Glycobiology, 2006, 16, 1073-1081.	2.5	39
15	Expression, purification and characterisation of soluble GlfT and the identification of a novel galactofuranosyltransferase Rv3782 involved in priming GlfT-mediated galactan polymerisation in Mycobacterium tuberculosis. Protein Expression and Purification, 2008, 58, 332-341.	1.3	37
16	Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus. Nature Communications, 2015, 6, 8884.	12.8	37
17	Topology and mutational analysis of the single Emb arabinofuranosyltransferase of Corynebacterium glutamicum as a model of Emb proteins of Mycobacterium tuberculosis. Glycobiology, 2007, 17, 210-219.	2.5	36
18	Benzothiazinones Mediate Killing of Corynebacterineae by Blocking Decaprenyl Phosphate Recycling Involved in Cell Wall Biosynthesis. Journal of Biological Chemistry, 2014, 289, 6177-6187.	3.4	34

#	Article	IF	CITATIONS
19	Biochemical and Structural Characterization of Mycobacterial Aspartyl-tRNA Synthetase AspS, a Promising TB Drug Target. PLoS ONE, 2014, 9, e113568.	2.5	31
20	Synthesis of \hat{I}_{\pm} -Glucan in Mycobacteria Involves a Hetero-octameric Complex of Trehalose Synthase TreS and Maltokinase Pep2. ACS Chemical Biology, 2013, 8, 2245-2255.	3.4	27
21	HIV Drugs Inhibit Transfer of Plasmids Carrying Extended-Spectrum \hat{I}^2 -Lactamase and Carbapenemase Genes. MBio, 2020, 11 , .	4.1	22
22	Disruption of Mycobacterial AftB Results in Complete Loss of Terminal $\hat{l}^2(1 \hat{a}^{\dagger}, 2)$ Arabinofuranose Residues of Lipoarabinomannan. ACS Chemical Biology, 2017, 12, 183-190.	3.4	17
23	Tuberculosis: a balanced diet of lipids and carbohydrates. Biochemical Society Transactions, 2008, 36, 555-565.	3.4	14
24	AftD functions as an $\hat{1}\pm 1\hat{a}\in \hat{a}^{\dagger}\hat{a}\in \hat{b}$ arabinofuranosyltransferase involved in the biosynthesis of the mycobacterial cell wall core. Cell Surface, 2018, 1, 2-14.	3.0	14
25	Inhibition of Mycobacterium tuberculosis InhA: Design, synthesis and evaluation of new di-triclosan derivatives. Bioorganic and Medicinal Chemistry, 2020, 28, 115744.	3.0	14
26	Utilisation of the Prestwick Chemical Library to identify drugs that inhibit the growth of mycobacteria. PLoS ONE, 2019, 14, e0213713.	2.5	13
27	Identification of a Terminal Rhamnopyranosyltransferase (RptA) Involved in <i>Corynebacterium glutamicum</i> Cell Wall Biosynthesis. Journal of Bacteriology, 2009, 191, 4879-4887.	2.2	12
28	Elucidation of a protein-protein interaction network involved in Corynebacterium glutamicum cell wall biosynthesis as determined by bacterial two-hybrid analysis. Glycoconjugate Journal, 2014, 31, 475-483.	2.7	12
29	Structure-based in silico approaches for drug discovery against Mycobacterium tuberculosis. Computational and Structural Biotechnology Journal, 2021, 19, 3708-3719.	4.1	10
30	The singular Corynebacterium glutamicum Emb arabinofuranosyltransferase polymerises the α(1â€â†'â€5) arabinan backbone in the early stages of cell wall arabinan biosynthesis. Cell Surface, 2018, 2, 38-53.	3.0	8
31	Crystal structure of the TreS:Pep2 complex, initiating \hat{I} ±-glucan synthesis in the GlgE pathway of mycobacteria. Journal of Biological Chemistry, 2019, 294, 7348-7359.	3.4	8
32	Direct liquid extraction surface analysis mass spectrometry of cell wall lipids from mycobacteria: Salt additives for decreased spectral complexity. Rapid Communications in Mass Spectrometry, 2021, 35, e8523.	1.5	5
33	Development of anti-virulence polymers targeting mycobacteria. Access Microbiology, 2019, 1 , .	0.5	0
34	OR28-03 Drug Repurposing Identifies Inhibitors of the Proteostasis Network to Augment Radioiodine Uptake in Combinatorial Approaches Targeting Thyroid Cancer. Journal of the Endocrine Society, 2020, 4, .	0.2	0