Josef Zweck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2997224/publications.pdf

Version: 2024-02-01

759233 940533 17 659 12 16 h-index citations g-index papers 32 32 32 799 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction. Nature Communications, 2014, 5, 5653.	12.8	232
2	Differential phase contrast 2.0—Opening new "fields―for an established technique. Ultramicroscopy, 2012, 117, 7-14.	1.9	86
3	Scanning transmission electron microscopy strain measurement from millisecond frames of a direct electron charge coupled device. Applied Physics Letters, 2012, 101, 212110.	3.3	63
4	Strain Measurement in Semiconductor Heterostructures by Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2012, 18, 995-1009.	0.4	62
5	Direct detection of spontaneous polarization in wurtzite GaAs nanowires. Applied Physics Letters, 2014, 104, .	3.3	40
6	Quantitative measurements of internal electric fields with differential phase contrast microscopy on InGaN/GaN quantum well structures. Physica Status Solidi (B): Basic Research, 2016, 253, 140-144.	1.5	31
7	On detector linearity and precision of beam shift detection for quantitative differential phase contrast applications. Ultramicroscopy, 2016, 168, 53-64.	1.9	23
8	Imaging of magnetic and electric fields by electron microscopy. Journal of Physics Condensed Matter, 2016, 28, 403001.	1.8	20
9	Stereoselective Alkyne Hydrogenation by using a Simple Iron Catalyst. ChemSusChem, 2019, 12, 3864-3870.	6.8	17
10	Stereoselective Chromiumâ€Catalyzed Semiâ€Hydrogenation of Alkynes. ChemCatChem, 2020, 12, 5359-5363.	3.7	16
11	On the achievable field sensitivity of a segmented annular detector for differential phase contrast measurements. Ultramicroscopy, 2017, 177, 97-105.	1.9	14
12	Introducing a non-pixelated and fast centre of mass detector for differential phase contrast microscopy. Ultramicroscopy, 2018, 192, 21-28.	1.9	12
13	Determination of polarization fields in group III-nitride heterostructures by capacitance-voltage-measurements. Journal of Applied Physics, 2016, 119, .	2.5	9
14	The differential phase contrast uncertainty relation: Connection between electron dose and field resolution. Ultramicroscopy, 2021, 228, 113342.	1.9	6
15	Influence of combinatory effects of STEM setups on the sensitivity of differential phase contrast imaging. Micron, 2019, 127, 102755.	2.2	5
16	A study on the correlation between micro and magnetic domain structure of Cu52Ni34Fe14 spinodal alloys. Journal of Alloys and Compounds, 2022, 922, 166214.	5.5	3
17	In-Situ TEM Studies of Oxidation. , 2012, , 191-208.		1