Wilhelmina Hol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2996769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Root-Lesion Nematodes Suppress Cabbage Aphid Population Development by Reducing Aphid Daily Reproduction. Frontiers in Plant Science, 2016, 7, 111.	3.6	12
2	Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles. Frontiers in Microbiology, 2015, 6, 701.	3.5	67
3	Context dependency and saturating effects of loss of rare soil microbes on plant productivity. Frontiers in Plant Science, 2015, 6, 485.	3.6	56
4	Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 2015, 21, 973-985.	9.5	641
5	Plant–soil feedbacks of exotic plant species across life forms: a meta-analysis. Biological Invasions, 2014, 16, 2551-2561.	2.4	70
6	Heterodera schachtii Nematodes Interfere with Aphid-Plant Relations on Brassica oleracea. Journal of Chemical Ecology, 2013, 39, 1193-1203.	1.8	24
7	Soil and Freshwater and Marine Sediment Food Webs: Their Structure and Function. BioScience, 2013, 63, 35-42.	4.9	34
8	Soil food web properties explain ecosystem services across European land use systems. Proceedings of the United States of America, 2013, 110, 14296-14301.	7.1	520
9	Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Frontiers in Plant Science, 2013, 4, 81.	3.6	121
10	Competition Increases Sensitivity of Wheat (Triticum aestivum) to Biotic Plant-Soil Feedback. PLoS ONE, 2013, 8, e66085.	2.5	29
11	Testing the Paradox of Enrichment along a Land Use Gradient in a Multitrophic Aboveground and Belowground Community. PLoS ONE, 2012, 7, e49034.	2.5	14
12	Fungistasis and general soil biostasis – A new synthesis. Soil Biology and Biochemistry, 2011, 43, 469-477.	8.8	122
13	The effect of nutrients on pyrrolizidine alkaloids in Senecio plants and their interactions with herbivores and pathogens. Phytochemistry Reviews, 2011, 10, 119-126.	6.5	35
14	Idiosyncrasy in ecology – what's in a word?. Frontiers in Ecology and the Environment, 2011, 9, 431-433.	4.0	3
15	Comparing arbuscular mycorrhizal communities of individual plants in a grassland biodiversity experiment. New Phytologist, 2010, 186, 746-754.	7.3	28
16	Reduction of rare soil microbes modifies plant–herbivore interactions. Ecology Letters, 2010, 13, 292-301.	6.4	176
17	No Paradox for Invasive Plants. Science, 2009, 325, 814-814.	12.6	3
18	The power of simulating experiments. Ecological Modelling, 2009, 220, 2594-2597.	2.5	20

WILHELMINA HOL

#	Article	IF	CITATIONS
19	Empirical and theoretical challenges in aboveground–belowground ecology. Oecologia, 2009, 161, 1-14.	2.0	223
20	Quantifying the impact of above―and belowground higher trophic levels on plant and herbivore performance by modeling ¹ . Oikos, 2009, 118, 981-990.	2.7	13
21	Arbuscular mycorrhizal fungi of Ammophila arenaria (L.) Link: Spore abundance and root colonisation in six locations of the European coast. European Journal of Soil Biology, 2008, 44, 30-36.	3.2	46
22	Interaction between a fungal endophyte and root herbivores of Ammophila arenaria. Basic and Applied Ecology, 2007, 8, 500-509.	2.7	30
23	Nematode Interactions in Nature: Models for Sustainable Control of Nematode Pests of Crop Plants?. Advances in Agronomy, 2006, 89, 227-260.	5.2	54
24	Rhizosphere fungal communities are influenced by Senecio jacobaea pyrrolizidine alkaloid content and composition. Soil Biology and Biochemistry, 2006, 38, 2852-2859.	8.8	61
25	An overview of arbuscular mycorrhizal fungi–nematode interactions. Basic and Applied Ecology, 2005, 6, 489-503.	2.7	137
26	Root damage and aboveground herbivory change concentration and composition of pyrrolizidine alkaloids of Senecio jacobaea. Basic and Applied Ecology, 2004, 5, 253-260.	2.7	65
27	Nutrients decrease pyrrolizidine alkaloid concentrations in Senecio jacobaea. New Phytologist, 2003, 158, 175-181.	7.3	47
28	Pyrrolizidine alkaloids from Senecio jacobaea affect fungal growth. Journal of Chemical Ecology, 2002, 28, 1763-1772.	1.8	70