Yimon Aye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2996728/publications.pdf

Version: 2024-02-01

257101 288905 1,943 66 24 40 citations h-index g-index papers 74 74 74 1973 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Function-guided proximity mapping unveils electrophilic-metabolite sensing by proteins not present in their canonical locales. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	12
2	Hitting the Bullseye: Endogenous Electrophiles Show Remarkable Nuance in Signaling Regulation. Chemical Research in Toxicology, 2022, 35, 1636-1648.	1.7	1
3	Keap 1: the new Janus word on the block. Bioorganic and Medicinal Chemistry Letters, 2022, , 128766.	1.0	2
4	An Oculus to Profile and Probe Target Engagement In Vivo: How T-REX Was Born and Its Evolution into G-REX. Accounts of Chemical Research, 2021, 54, 618-631.	7.6	20
5	Can Precision Electrophile Signaling Make a Meaningful and Lasting Impression in Drug Design?. ChemBioChem, 2021, , .	1.3	2
6	Science's Response to CoVIDâ€19. ChemMedChem, 2021, 16, 2288-2314.	1.6	15
7	Wdr1 and cofilin are necessary mediators of immune-cell-specific apoptosis triggered by Tecfidera. Nature Communications, 2021, 12, 5736.	5.8	21
8	The not so identical twins: (dis)similarities between reactive electrophile and oxidant sensing and signaling. Chemical Society Reviews, 2021, 50, 12269-12291.	18.7	3
9	A primer on harnessing non-enzymatic post-translational modifications for drug design. RSC Medicinal Chemistry, 2021, 12, 1797-1807.	1.7	1
10	REX technologies for profiling and decoding the electrophile signaling axes mediated by Rosetta Stone proteins. Methods in Enzymology, 2020, 633, 203-230.	0.4	5
11	Getting the Right Grip? How Understanding Electrophile Selectivity Profiles Could Illuminate Our Understanding of Redox Signaling. Antioxidants and Redox Signaling, 2020, 33, 1077-1091.	2.5	6
12	Clofarabine Commandeers the RNR-α-ZRANB3 Nuclear Signaling Axis. Cell Chemical Biology, 2020, 27, 122-133.e5.	2.5	9
13	The more the merrier: how homo-oligomerization alters the interactome and function of ribonucleotide reductase. Current Opinion in Chemical Biology, 2020, 54, 10-18.	2.8	7
14	Where Electrophile Signaling and Covalent Ligand–Target Mining Converge. Chimia, 2020, 74, 659-666.	0.3	0
15	Neighborhood watch: tools for defining locale-dependent subproteomes and their contextual signaling activities. RSC Chemical Biology, 2020, 1, 42-55.	2.0	12
16	Precision Targeting of <i>pten</i> -Null Triple-Negative Breast Tumors Guided by Electrophilic Metabolite Sensing. ACS Central Science, 2020, 6, 892-902.	5.3	24
17	Electrophile Signaling and Emerging Immuno- and Neuro-modulatory Electrophilic Pharmaceuticals. Frontiers in Aging Neuroscience, 2020, 12, 1.	1.7	84
18	The mRNAâ€Binding Protein HuR Is a Kineticallyâ€Privileged Electrophile Sensor. Helvetica Chimica Acta, 2020, 103, e2000041.	1.0	5

#	Article	IF	Citations
19	Editorial overview: From the iceman to modern medicine. Current Opinion in Chemical Biology, 2019, 50, A1-A2.	2.8	0
20	Postâ€transcriptional regulation of Nrf2â€mRNA by the mRNAâ€binding proteins HuR and AUF1. FASEB Journal, 2019, 33, 14636-14652.	0.2	42
21	Breaking the Fourth Wall: Modulating Quaternary Associations for Protein Regulation and Drug Discovery. ChemBioChem, 2019, 20, 1091-1104.	1.3	5
22	Redox Pathways in Chemical Toxicology. Chemical Research in Toxicology, 2019, 32, 341-341.	1.7	0
23	Genie in a bottle: controlled release helps tame natural polypharmacology?. Current Opinion in Chemical Biology, 2019, 51, 48-56.	2.8	16
24	Modular Total Synthesis and Cell-Based Anticancer Activity Evaluation of Ouabagenin and Other Cardiotonic Steroids with Varying Degrees of Oxygenation. Journal of the American Chemical Society, 2019, 141, 4849-4860.	6.6	59
25	Interrogating Precision Electrophile Signaling. Trends in Biochemical Sciences, 2019, 44, 380-381.	3.7	9
26	Chemical Biology Gateways to Mapping Location, Association, and Pathway Responsivity. Frontiers in Chemistry, 2019, 7, 125.	1.8	8
27	Proteomics and Beyond: Cell Decision-Making Shaped by Reactive Electrophiles. Trends in Biochemical Sciences, 2019, 44, 75-89.	3.7	33
28	Cardiovascular Small Heat Shock Protein HSPB7 Is a Kinetically Privileged Reactive Electrophilic Species (RES) Sensor. ACS Chemical Biology, 2018, 13, 1824-1831.	1.6	24
29	Ube2V2 Is a Rosetta Stone Bridging Redox and Ubiquitin Codes, Coordinating DNA Damage Responses. ACS Central Science, 2018, 4, 246-259.	5.3	51
30	Getting the Message? Native Reactive Electrophiles Pass Two Out of Three Thresholds to be Bona Fide Signaling Mediators. BioEssays, 2018, 40, 1700240.	1.2	16
31	Precision Electrophile Tagging in <i>Caenorhabditis elegans</i> . Biochemistry, 2018, 57, 216-220.	1.2	17
32	Weighing up the Selenocysteome Uncovers New Sec-rets. Cell Chemical Biology, 2018, 25, 1315-1317.	2.5	1
33	3.3- \tilde{A} resolution cryo-EM structure of human ribonucleotide reductase with substrate and allosteric regulators bound. ELife, 2018, 7, .	2.8	37
34	Redox Signaling by Reactive Electrophiles and Oxidants. Chemical Reviews, 2018, 118, 8798-8888.	23.0	232
35	Nuclear RNR-α antagonizes cell proliferation by directly inhibiting ZRANB3. Nature Chemical Biology, 2018, 14, 943-954.	3.9	22
36	Singleâ€Proteinâ€Specific Redox Targeting in Live Mammalian Cells and C. elegans. Current Protocols in Chemical Biology, 2018, 10, e43.	1.7	13

#	Article	IF	CITATIONS
37	Akt3 is a privileged first responder in isozyme-specific electrophile response. Nature Chemical Biology, 2017, 13, 333-338.	3.9	56
38	<i>Subcellular Redox Targeting</i> : Bridging <i>in Vitro</i> and <i>in Vivo</i> Chemical Biology. ACS Chemical Biology, 2017, 12, 586-600.	1.6	22
39	Privileged Electrophile Sensors: A Resource for Covalent Drug Development. Cell Chemical Biology, 2017, 24, 787-800.	2.5	63
40	Meeting Proceedings, 2017 Cornell University Baker Symposiumâ€" <i>Quo Vadis</i> : The Boundless Trajectories of Chemical Biology. ACS Chemical Biology, 2017, 12, 1445-1448.	1.6	0
41	Î ² -TrCP1 Is a Vacillatory Regulator of Wnt Signaling. Cell Chemical Biology, 2017, 24, 944-957.e7.	2.5	39
42	Cladribine and Fludarabine Nucleotides Induce Distinct Hexamers Defining a Common Mode of Reversible RNR Inhibition. ACS Chemical Biology, 2016, 11, 2021-2032.	1.6	33
43	The Die Is Cast: Precision Electrophilic Modifications Contribute to Cellular Decision Making. Chemical Research in Toxicology, 2016, 29, 1575-1582.	1.7	23
44	T-REX on-demand redox targeting in live cells. Nature Protocols, 2016, 11, 2328-2356.	5.5	62
45	On-Demand Targeting: Investigating Biology with Proximity-Directed Chemistry. Journal of the American Chemical Society, 2016, 138, 3610-3622.	6.6	68
46	Substoichiometric Hydroxynonenylation of a Single Protein Recapitulates Whole-Cell-Stimulated Antioxidant Response. Journal of the American Chemical Society, 2015, 137, 10-13.	6.6	66
47	A Generalizable Platform for Interrogating Target- and Signal-Specific Consequences of Electrophilic Modifications in Redox-Dependent Cell Signaling. Journal of the American Chemical Society, 2015, 137, 6232-6244.	6.6	61
48	A Fluorimetric Readout Reporting the Kinetics of Nucleotideâ€induced Human Ribonucleotide Reductase Oligomerization. FASEB Journal, 2015, 29, 722.6.	0.2	0
49	Mechanistic Basis of Residue Specificity in Targeted Electrophilic Modification. FASEB Journal, 2015, 29, 565.10.	0.2	O
50	Oligomeric Regulation of Ribonucleotide Reductase (RNR) by Antileukemic Nucleotides. FASEB Journal, 2015, 29, 721.36.	0.2	0
51	Substoichiometric Hydroxynonenylation of a Single Protein Recapitulates Wholeâ€cellâ€stimulated Antioxidant Response. FASEB Journal, 2015, 29, 570.1.	0.2	O
52	Chemistryâ€Driven Approaches to Deconstruct Redoxâ€Linked Signal Transduction Networks. FASEB Journal, 2015, 29, 570.14.	0.2	0
53	A Fluorimetric Readout Reporting the Kinetics of Nucleotideâ€Induced Human Ribonucleotide Reductase Oligomerization. ChemBioChem, 2014, 15, 2598-2604.	1.3	9
54	Temporally Controlled Targeting of 4-Hydroxynonenal to Specific Proteins in Living Cells. Journal of the American Chemical Society, 2013, 135, 14496-14499.	6.6	60

#	Article	IF	CITATIONS
55	Uncoupling of Allosteric and Oligomeric Regulation in a Functional Hybrid Enzyme Constructed from Escherichia coli and Human Ribonucleotide Reductase. Biochemistry, 2013, 52, 7050-7059.	1.2	13
56	Mechanistic Studies of Semicarbazone Triapine Targeting Human Ribonucleotide Reductase in Vitro and in Mammalian Cells. Journal of Biological Chemistry, 2012, 287, 35768-35778.	1.6	64
57	Clofarabine Targets the Large Subunit ($\hat{l}\pm$) of Human Ribonucleotide Reductase in Live Cells by Assembly into Persistent Hexamers. Chemistry and Biology, 2012, 19, 799-805.	6.2	45
58	Clofarabine 5′-di and -triphosphates inhibit human ribonucleotide reductase by altering the quaternary structure of its large subunit. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9815-9820.	3.3	62
59	Vinylâ€, Propargylâ€, and Allenylsilicon Reagents in Asymmetric Synthesis: A Relatively Untapped Resource of Environmentally Benign Reagents. Chemistry - A European Journal, 2009, 15, 5402-5416.	1.7	90
60	Structural Report for Sc[(R,R)-norephedrine-pybox](OTf)3 Dimeric Complex. Journal of Chemical Crystallography, 2008, 38, 49-52.	0.5	4
61	Parallel kinetic resolution of tert-butyl (RS)-3-oxy-substituted cyclopent-1-ene-carboxylates for the asymmetric synthesis of 3-oxy-substituted cispentacin and transpentacin derivatives. Organic and Biomolecular Chemistry, 2008, 6, 2195.	1.5	40
62	Aluminum-Catalyzed Enantio- and Diastereoselective Carbonyl Addition of Propargylsilanes. A New Approach to Enantioenriched Vinyl Epoxides. Journal of the American Chemical Society, 2007, 129, 9606-9607.	6.6	30
63	Enantioselective Scandium-Catalyzed Vinylsilane Additions: A New Approach to the Synthesis of Enantiopure β,γ-Unsaturated α-Hydroxy Acid Derivatives. Journal of the American Chemical Society, 2006, 128, 11034-11035.	6.6	56
64	Asymmetric, anti-Selective Scandium-Catalyzed Sakurai Additions to Glyoxyamide. Applications to the Syntheses of N-Bocd-Alloisoleucine and d-Isoleucine. Organic Letters, 2006, 8, 2071-2073.	2.4	51
65	Asymmetric Catalysis Special Feature Part II: Copper-catalyzed asymmetric conjugate reduction as a route to novel Â-azaheterocyclic acid derivatives. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5821-5823.	3.3	104
66	Hiding in Plain Sight: The Issue of Hidden Variables. ACS Chemical Biology, 0, , .	1.6	1