David M Burmeister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2996535/publications.pdf

Version: 2024-02-01

43 papers

1,479 citations

430874 18 h-index 330143 37 g-index

43 all docs 43 docs citations

43 times ranked

2024 citing authors

#	Article	IF	CITATIONS
1	Burn wound healing and treatment: review and advancements. Critical Care, 2015, 19, 243.	5.8	603
2	The Cutaneous Microbiome and Wounds: New Molecular Targets to Promote Wound Healing. International Journal of Molecular Sciences, 2018, 19, 2699.	4.1	146
3	An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue. BMC Research Notes, 2016, 9, 216.	1.4	93
4	Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI). Biomedical Optics Express, 2014, 5, 3467.	2.9	76
5	Utility of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) to non-invasively diagnose burn depth in a porcine model. Burns, 2015, 41, 1242-1252.	1.9	59
6	Delivery of Allogeneic Adipose Stem Cells in Polyethylene Glycol-Fibrin Hydrogels as an Adjunct to Meshed Autografts After Sharp Debridement of Deep Partial Thickness Burns. Stem Cells Translational Medicine, 2018, 7, 360-372.	3.3	42
7	Initial Characterization of the Pig Skin Bacteriome and Its Effect on In Vitro Models of Wound Healing. PLoS ONE, 2016, 11, e0166176.	2.5	35
8	Molecular mechanisms of trauma-induced acute kidney injury: Inflammatory and metabolic insights from animal models. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2661-2671.	3.8	32
9	Experimental models of acute kidney injury for translational research. Nature Reviews Nephrology, 2022, 18, 277-293.	9.6	32
10	Enteral resuscitation with oral rehydration solution to reduce acute kidney injury in burn victims: Evidence from a porcine model. PLoS ONE, 2018, 13, e0195615.	2.5	29
11	Large animal models for translational research in acute kidney injury. Renal Failure, 2020, 42, 1042-1058.	2.1	29
12	The gut microbiome distinguishes mortality in trauma patients upon admission to the emergency department. Journal of Trauma and Acute Care Surgery, 2020, 88, 579-587.	2.1	27
13	Impact of Isolated Burns on Major Organs. Shock, 2016, 46, 137-147.	2.1	25
14	Progress of clinical practice on the management of burn-associated pain: Lessons from animal models. Burns, 2016, 42, 1161-1172.	1.9	24
15	In Situ Delivery of Fibrin-Based Hydrogels Prevents Contraction and Reduces Inflammation. Journal of Burn Care and Research, 2017, 39, 1.	0.4	23
16	Polytrauma independent of therapeutic intervention alters the gastrointestinal microbiome. American Journal of Surgery, 2018, 216, 699-705.	1.8	23
17	A prospective study in severely injured patients reveals an altered gut microbiome is associated with transfusion volume. Journal of Trauma and Acute Care Surgery, 2019, 86, 573-582.	2.1	23
18	Noninvasive Techniques for the Determination of Burn Severity in Real Time. Journal of Burn Care and Research, 2017, 38, e180-e191.	0.4	21

#	Article	IF	Citations
19	Burn resuscitation strategy influences the gut microbiota-liver axis in swine. Scientific Reports, 2020, 10, 15655.	3.3	13
20	Burn-induced reductions in mitochondrial abundance and efficiency are more pronounced with small volumes of colloids in swine. American Journal of Physiology - Cell Physiology, 2019, 317, C1229-C1238.	4.6	10
21	Plasma and Urinary Glycosaminoglycans as Evidence for Endotheliopathy in a Swine Burn Model. Journal of Surgical Research, 2020, 248, 28-37.	1.6	10
22	An Assessment of Research Priorities to Dampen the Pendulum Swing of Burn Resuscitation. Journal of Burn Care and Research, 2021, 42, 113-125.	0.4	10
23	The Effect of Burn Resuscitation Volumes on the Gut Microbiome in a Swine Model. Shock, 2020, 54, 368-376.	2.1	9
24	Impact of oral resuscitation on circulating and splenic leukocytes after burns. Burns, 2020, 46, 567-578.	1.9	9
25	Whole blood resuscitation restores intestinal perfusion and influences gut microbiome diversity. Journal of Trauma and Acute Care Surgery, 2021, 91, 1002-1009.	2.1	9
26	Effect of Intravenous Fluid Volumes on the Adrenal Glucocorticoid Response After Burn Injury in Swine. Journal of Burn Care and Research, 2018, 39, 652-660.	0.4	8
27	A model of recovery from inhalation injury and cutaneous burn in ambulatory swine. Burns, 2017, 43, 1295-1305.	1.9	7
28	Isolation and Characterization of Multipotent CD24+ Cells From the Renal Papilla of Swine. Frontiers in Medicine, 2018, 5, 250.	2.6	7
29	Tourniquetâ€induced lower limb ischemia/reperfusion reduces mitochondrial function by decreasing mitochondrial biogenesis in acute kidney injury in mice. Physiological Reports, 2022, 10, e15181.	1.7	7
30	Increased oxidative phosphorylation in lymphocytes does not atone for decreased cell numbers after burn injury. Innate Immunity, 2020, 26, 403-412.	2.4	6
31	A Prospective Observational Study Comparing Clinical Sepsis Criteria to Protein Biomarkers Reveals a Role for Vascular Dysfunction in Burn Sepsis. , 2022, 4, e0610.		6
32	Burn Shock and Resuscitation: Review and State of the Science. Journal of Burn Care and Research, 2022, 43, 567-585.	0.4	6
33	Predicting wound healing rates and survival with the use of automated serial evaluations of burn wounds. Burns, 2019, 45, 48-53.	1.9	4
34	Minimal Effects of Intravenous Administration of Xenogeneic Adipose Derived Stem Cells on Organ Function in a Porcine 40% TBSA Burn Model. Journal of Burn Care and Research, 2021, 42, 870-879.	0.4	4
35	Point-of-Care Urinary Biomarker Testing for Risk Prediction in Critically Injured Combat Casualties. Journal of the American College of Surgeons, 2019, 229, 508-515e1.	0.5	3
36	Advantages and Disadvantages of Using Small and Large Animals in Burn Research: Proceedings of the 2021 Research Special Interest Group. Journal of Burn Care and Research, 2022, 43, 1032-1041.	0.4	3

#	Article	lF	CITATIONS
37	A 30% incidence of renal cysts with varying sizes and densities in biomedical research swine is not associated with renal dysfunction. Animal Models and Experimental Medicine, 2020, 3, 273-281.	3.3	2
38	ASCs derived from burn patients are more prone to increased oxidative metabolism and reactive oxygen species upon passaging. Stem Cell Research and Therapy, 2021, 12, 270.	5.5	2
39	Inhibition of Naâ€H exchanger 3 ameliorates lower limb ischemia/reperfusionâ€induced acute kidney injury through preservation of mitochondrial biogenesis in mice. FASEB Journal, 2022, 36, .	0.5	1
40	The Potential of Arterial Pulse Wave Analysis in Burn Resuscitation: A Pilot In Vivo Study. Journal of Burn Care and Research, 2023, 44, 599-609.	0.4	1
41	125 Minimal Effects of Intravenous Administration of Xenogeneic Adipose Derived Stem Cells on Organ Function in a Porcine 40%TBSA Burn Model. Journal of Burn Care and Research, 2021, 42, S84-S85.	0.4	O
42	A case study demonstrating tolerance of the gut to large volumes of enteral fluids as a complement to IV fluid resuscitation in burn shock. International Journal of Burns and Trauma, 2021, 11, 202-206.	0.2	0
43	T5 Tracking Cardiac Output During Burn Resuscitation via Pulse Wave Analysis. Journal of Burn Care and Research, 2022, 43, S4-S5.	0.4	0