Etienne Garand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/29964/publications.pdf

Version: 2024-02-01

279798 233421 2,143 61 23 45 citations h-index g-index papers 65 65 65 2119 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cryogenic Ion Chemistry and Spectroscopy. Accounts of Chemical Research, 2014, 47, 202-210.	15.6	256
2	Infrared Spectroscopy of the Microhydrated Nitrate Ions NO ₃ ^{â^'} (H ₂ O) _{1â^'6} . Journal of Physical Chemistry A, 2009, 113, 7584-7592.	2.5	209
3	Infrared Spectroscopy of Hydrated Bicarbonate Anion Clusters: HCO ₃ ^{â^'} (H ₂ O) _{1â^'10} . Journal of the American Chemical Society, 2010, 132, 849-856.	13.7	146
4	Vibrational Characterization of Simple Peptides Using Cryogenic Infrared Photodissociation of H ₂ -Tagged, Mass-Selected Ions. Journal of the American Chemical Society, 2011, 133, 6440-6448.	13.7	139
5	Determination of Noncovalent Docking by Infrared Spectroscopy of Cold Gas-Phase Complexes. Science, 2012, 335, 694-698.	12.6	127
6	Isomer-Specific IR–IR Double Resonance Spectroscopy of D ₂ -Tagged Protonated Dipeptides Prepared in a Cryogenic Ion Trap. Journal of Physical Chemistry Letters, 2012, 3, 1099-1105.	4.6	88
7	Vibrational spectroscopy of hydrated electron clusters(H2O)15–50â^' via infrared multiple photon dissociation. Journal of Chemical Physics, 2007, 126, 191105.	3.0	74
8	Nonadiabatic Interactions in the Cl + H ₂ Reaction Probed by ClH ₂ ⁻ and ClD ₂ ⁻ Photoelectron Imaging. Science, 2008, 319, 72-75.	12.6	74
9	A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters. Journal of Chemical Physics, 2015, 143, 204201.	3.0	72
10	Vibronic Structure of the Formyloxyl Radical (HCO ₂) via Slow Photoelectron Velocity-Map Imaging Spectroscopy and Model Hamiltonian Calculations. Journal of Physical Chemistry A, 2010, 114, 1374-1383.	2.5	49
11	Slow photoelectron velocity-map imaging spectroscopy of C2Nâ^', C4Nâ^', and C6Nâ^'. Journal of Chemical Physics, 2009, 130, 064304.	3.0	41
12	Interaction between ionic liquid cation and water: infrared predissociation study of [bmim]+ \hat{A} ·(H2O)n clusters. Physical Chemistry Chemical Physics, 2016, 18, 18905-18913.	2.8	39
13	Slow electron velocity-map imaging spectroscopy of the C4Hâ^' and C4Dâ^' anions. Journal of Chemical Physics, 2007, 127, 154320.	3.0	37
14	Characterizing the Intramolecular H-bond and Secondary Structure in Methylated GlyGlyH ⁺ with H ₂ Predissociation Spectroscopy. Journal of the American Society for Mass Spectrometry, 2011, 22, 1941-52.	2.8	37
15	Vibrational Spectroscopy of Small Hydrated CuOH ⁺ Clusters. Journal of Physical Chemistry A, 2014, 118, 2063-2071.	2.5	33
16	IR-IR Conformation Specific Spectroscopy of Na ⁺ (Glucose) Adducts. Journal of the American Society for Mass Spectrometry, 2018, 29, 42-50.	2.8	33
17	Anion Photoelectron Spectroscopy of C ₃ N ^{â^'} and C ₅ N ^{â^'} . Journal of Physical Chemistry A, 2010, 114, 3215-3220.	2.5	32
18	Vibrationally resolved transition state spectroscopy of the F + H2 and F + CH4 reactions. Faraday Discussions, 2012, 157, 399.	3.2	30

#	Article	IF	Citations
19	Characterization of cyclic and linear C3Hâ ⁻ and C3H via anion photoelectron spectroscopy. Journal of Chemical Physics, 2008, 128, 034301.	3.0	28
20	Quantitative vibronic coupling calculations: the formyloxyl radical. Theoretical Chemistry Accounts, 2011, 129, 527-543.	1.4	28
21	Probing the Hydrogen-Bonded Water Network at the Active Site of a Water Oxidation Catalyst: [Ru(bpy)(tpy)(H ₂ O)] _{A·(H₂O)_{O–4}. Journal of Physical Chemistry A, 2015, 119, 6326-6332.}	2.5	28
22	Spectroscopy of Reactive Complexes and Solvated Clusters: A Bottom-Up Approach Using Cryogenic Ion Traps. Journal of Physical Chemistry A, 2018, 122, 6479-6490.	2.5	28
23	Vibronic structure in C2H and C2D from anion slow electron velocity-map imaging spectroscopy. Journal of Chemical Physics, 2007, 127, 114313.	3.0	26
24	Accessing the Vibrational Signatures of Amino Acid Ions Embedded in Water Clusters. Journal of Physical Chemistry Letters, 2018, 9, 2246-2250.	4.6	25
25	Coordination structure and charge transfer in microsolvated transition metal hydroxide clusters [MOH] <a 4<="" href="mailto:sup>+</sub>2</sub>0)<sub>1â€" sub="">. Physical Chemistry Chemical Physics, 2015, 17, 23195-23206.	2.8	24
26	Vibrational spectra of small silicon monoxide cluster cations measured by infrared multiple photon dissociation spectroscopy. Physical Chemistry Chemical Physics, 2008, 10, 1502.	2.8	22
27	Revealing the structure of isolated peptides: IR-IR predissociation spectroscopy of protonated triglycine isomers. Journal of Molecular Spectroscopy, 2018, 347, 28-34.	1.2	22
28	Slow electron velocity-map imaging spectroscopy of the 1-propynyl radical. Journal of Chemical Physics, 2007, 127, 034304.	3.0	21
29	Characterization of an activated iridium water splitting catalyst using infrared photodissociation of H2 tagged ions. Physical Chemistry Chemical Physics, 2012, 14, 10109.	2.8	21
30	Slow photoelectron velocity-map imaging spectroscopy of the vinoxide anion. Journal of Chemical Physics, 2009, 130, 244309.	3.0	20
31	Characterization of the Oxygen Binding Motif in a Ruthenium Water Oxidation Catalyst by Vibrational Spectroscopy. Angewandte Chemie - International Edition, 2016, 55, 4079-4082.	13.8	20
32	Microsolvation Structures of Protonated Glycine and <scp>l</scp> -Alanine. Journal of Physical Chemistry A, 2019, 123, 3355-3366.	2.5	20
33	Ground and low-lying excited states of propadienylidene (H2C=C=C:) obtained by negative ion photoelectron spectroscopy. Journal of Chemical Physics, 2012, 136, 134312.	3.0	18
34	Photoelectron spectroscopy of anthracene and fluoranthene radical anions. Journal of Chemical Physics, 2018, 148, 234306.	3.0	18
35	Inter- and Intramolecular Temperature-Dependent Vibrational Perturbations of Alkanethiol Self-Assembled Monolayers. Journal of Physical Chemistry B, 2004, 108, 8182-8189.	2.6	17
36	Intramolecular Hydrogen Bonding Motifs in Deprotonated Glycine Peptides by Cryogenic Ion Infrared Spectroscopy. Journal of Physical Chemistry A, 2014, 118, 3906-3912.	2.5	17

3

#	Article	IF	CITATIONS
37	Probing Solvation-Induced Structural Changes in Conformationally Flexible Peptides: IR Spectroscopy of Gly 3 c sub 3 c sub 4 c sup 4 c sup 3 c sub 3	2.5	17
38	Slow photoelectron imaging spectroscopy of CCOâ [^] and CCSâ [^] . Journal of Chemical Physics, 2008, 129, 074312.	3.0	16
39	Slow photoelectron velocity-map imaging of the CnHâ^' (n = 5–9) anions. Chemical Science, 2010, 1, 192.	7.4	16
40	Charge transfer in MOH(H $<$ sub $>$ 2 $<$ /sub $>$ 0) $<$ sup $>+<$ /sup $>$ (M = Mn, Fe, Co, Ni, Cu, Zn) complexes revealed by vibrational spectroscopy of mass-selected ions. Physical Chemistry Chemical Physics, 2015, 17, 25786-25792.	2.8	16
41	The Mechanism of Hydrogen Formation Induced by Low-Energy Electron Irradiation of Hexadecanethiol Self-Assembled Monolayers. Journal of Physical Chemistry B, 2005, 109, 12927-12934.	2.6	15
42	Competition between Solvation and Intramolecular Hydrogen-Bonding in Microsolvated Protonated Glycine and \hat{l}^2 -Alanine. Journal of Physical Chemistry A, 2020, 124, 1593-1602.	2.5	15
43	Vibrational spectroscopy of isolated copper(<scp>ii</scp>) complexes with deprotonated triglycine and tetraglycine peptides. RSC Advances, 2015, 5, 1790-1795.	3.6	14
44	A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy. Journal of Chemical Physics, 2017, 147, 094201.	3.0	13
45	Slow Photoelectron Velocity-Map Imaging of the <i>i</i> ii>-Methylvinoxide Anion. Journal of Physical Chemistry A, 2010, 114, 11091-11099.	2.5	10
46	Ground and low-lying excited states of phenoxy, 1-naphthoxy, and 2-naphthoxy radicals via anion photoelectron spectroscopy. Journal of Chemical Physics, 2018, 149, 074309.	3.0	10
47	Study of ArO ^{â^'} and ArO via Slow Photoelectron Velocity-Map Imaging Spectroscopy and <i>Ab Initio</i> Calculations. Journal of Physical Chemistry A, 2009, 113, 4631-4638.	2.5	9
48	Study of KrO $<$ sup $>$ â $^2<$ /sup $>$ and KrO via Slow Photoelectron Velocity-Map Imaging Spectroscopy and ab Initio Calculations. Journal of Physical Chemistry A, 2009, 113, 14439-14446.	2.5	9
49	Slow photoelectron velocity-map imaging spectroscopy of C[sub 3]O[sup â^'] and C[sub 3]S[sup â^']. Journal of Chemical Physics, 2009, 131, 054312.	3.0	8
50	Direct Measurement of the Visible to UV Photodissociation Processes for the PhotoCORM TryptoCORM. Chemistry - A European Journal, 2020, 26, 10297-10306.	3.3	8
51	Slow photoelectron velocity-map imaging spectroscopy of the <i>n</i> -methylvinoxide anion. Journal of Chemical Physics, 2011, 134, 134307.	3.0	7
52	Vibrational Characterization of Microsolvated Electrocatalytic Water Oxidation Intermediate: [Ru(tpy)(bpy)(OH)]2+(H2O)0–4. Journal of Physical Chemistry A, 2017, 121, 5468-5474.	2.5	6
53	Comment on "Microhydration of Biomolecules: Revealing the Native Structures by Cold Ion IR Spectroscopy― Journal of Physical Chemistry Letters, 2022, 13, 2046-2050.	4.6	6
54	Study of RgSâ^' and RgS (Rg = Ne, Ar, and Kr) via slow photoelectron velocity-map imaging spectroscopy and ab initio calculations. Journal of Chemical Physics, 2011, 135, 024302.	3.0	5

#	Article	IF	CITATIONS
55	Vibrationally resolved photoelectron spectroscopy of oligothiophene radical anions. Journal of Chemical Physics, 2019, 151, 164301.	3.0	5
56	Quantifying Intrinsic Ion-Driven Conformational Changes in Diphenylacetylene Supramolecular Switches with Cryogenic Ion Vibrational Spectroscopy. Journal of Physical Chemistry A, 2013, 117, 5962-5969.	2.5	4
57	Mass Spectrometric and Vibrational Characterization of Reaction Intermediates in [Ru(bpy)(tpy)(H 2) Tj ETQq1 1	0,784314	rgBT /Over
58	Anion Resonances and Photoelectron Spectroscopy of the Tetracenyl Anion. Journal of Physical Chemistry A, 2021, 125, 7014-7022.	2.5	4
59	Conformational Changes Induced by Methyl Side-Chains in Protonated Tripeptides Containing Glycine and Alanine Residues. Journal of Physical Chemistry A, 2022, 126, 4036-4045.	2.5	4
60	Characterization of the Oxygen Binding Motif in a Ruthenium Water Oxidation Catalyst by Vibrational Spectroscopy. Angewandte Chemie, 2016, 128, 4147-4150.	2.0	3
61	Localization vs Conduction: Anionic Excitations in Alkanethiol Self-Assembled Monolayers. Langmuir, 2008, 24, 13850-13854.	3.5	0