

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2995967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nextâ€Generation Energy Harvesting and Storage Technologies for Robots Across All Scales. Advanced Intelligent Systems, 2023, 5, .	6.1	10
2	Sn Alloying to Inhibit Hydrogen Evolution of Zn Metal Anode in Rechargeable Aqueous Batteries. Advanced Functional Materials, 2022, 32, .	14.9	139
3	Flexible capacitive pressure sensors with micro-patterned porous dielectric layer for wearable electronics. Journal of Micromechanics and Microengineering, 2022, 32, 034003.	2.6	9
4	Self-healing single-ion-conductive artificial polymeric solid electrolyte interphases for stable lithium metal anodes. Nano Energy, 2022, 93, 106871.	16.0	50
5	Intrinsic catalytic Sites-Rich Co-doped SnO2 nanoparticles enabling enhanced conversion and capture of polysulfides. Chemical Engineering Journal, 2022, 431, 134033.	12.7	19
6	Regulating zinc electroplating chemistry to achieve high energy coaxial fiber Zn ion supercapacitor for self-powered textile-based monitoring system. Nano Energy, 2022, 93, 106893.	16.0	36
7	Stable lithium metal batteries enabled by localized high-concentration electrolytes with sevoflurane as a diluent. Journal of Materials Chemistry A, 2022, 10, 9001-9009.	10.3	18
8	Ultralight Iontronic Triboelectric Mechanoreceptor with High Specific Outputs for Epidermal Electronics. Nano-Micro Letters, 2022, 14, 86.	27.0	27
9	Flexible Ionic Diodes with High Rectifying Ratio and Wide Temperature Tolerance. Advanced Functional Materials, 2022, 32, .	14.9	14
10	Hybrid Nanogenerator for Biomechanical Energy Harvesting, Motion State Detection, and Pulse Sensing. Advanced Materials Technologies, 2022, 7, .	5.8	21
11	On-Chip 3D Zn/NiOOH Helical Electrodes for High-Energy-Density Microbattery. ACS Applied Energy Materials, 2022, 5, 6282-6290.	5.1	2
12	Hollow Ni ₃ Se ₄ with High Tap Density as a Carbon-Free Sulfur Immobilizer to Realize High Volumetric and Gravimetric Capacity for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 25267-25277.	8.0	15
13	Bioinspired soft electroreceptors for artificial precontact somatosensation. Science Advances, 2022, 8, .	10.3	56
14	Elastic Kernmantle Eâ€Braids for Highâ€Impact Sports Monitoring. Advanced Science, 2022, 9, .	11.2	12
15	Self-charging power system for distributed energy: beyond the energy storage unit. Chemical Science, 2021, 12, 34-49.	7.4	67
16	Boosting the Power and Lowering the Impedance of Triboelectric Nanogenerators through Manipulating the Permittivity for Wearable Energy Harvesting. ACS Nano, 2021, 15, 7513-7521.	14.6	90
17	Wearable Antifreezing Fiber-Shaped Zn/PANI Batteries with Suppressed Zn Dendrites and Operation in Sweat Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 17608-17617.	8.0	37
18	Textile Triboelectric Nanogenerators Simultaneously Harvesting Multiple "High-Entropy―Kinetic Energies. ACS Applied Materials & Interfaces, 2021, 13, 20145-20152.	8.0	38

#	Article	IF	CITATIONS
19	Flexible Textile Direct-Current Generator Based on the Tribovoltaic Effect at Dynamic Metal-Semiconducting Polymer Interfaces. ACS Energy Letters, 2021, 6, 2442-2450.	17.4	73
20	Multifunctional Selfâ€Charging Electrochromic Supercapacitors Driven by Directâ€Current Triboelectric Nanogenerators. Advanced Functional Materials, 2021, 31, 2104348.	14.9	53
21	Dynamically Crosslinked Dry Ionâ€Conducting Elastomers for Soft Iontronics. Advanced Materials, 2021, 33, e2101396.	21.0	128
22	3.3: Fabricating Selfâ€Powered Eâ€paper on Paper Substrates and Driven by Triboelectric Nanogenerator Module. Digest of Technical Papers SID International Symposium, 2021, 52, 67-70.	0.3	1
23	A stretchable, harsh condition-resistant and ambient-stable hydrogel and its applications in triboelectric nanogenerator. Nano Energy, 2021, 86, 106086.	16.0	46
24	Self-Healing Solid Polymer Electrolyte for Room-Temperature Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46794-46802.	8.0	37
25	Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. Nano Energy, 2021, 88, 106247.	16.0	66
26	Triboelectric-optical responsive cholesteric liquid crystals for self-powered smart window, E-paper display and optical switch. Science Bulletin, 2021, 66, 1986-1993.	9.0	32
27	Ultra-stretchable and healable hydrogel-based triboelectric nanogenerators for energy harvesting and self-powered sensing. RSC Advances, 2021, 11, 17437-17444.	3.6	41
28	High-performance dual-ion Zn batteries enabled by a polyzwitterionic hydrogel electrolyte with regulated anion/cation transport and suppressed Zn dendrite growth. Journal of Materials Chemistry A, 2021, 9, 24325-24335.	10.3	31
29	Electricity Generation and Self-Powered Sensing Enabled by Dynamic Electric Double Layer at Hydrogel–Dielectric Elastomer Interfaces. ACS Nano, 2021, 15, 19651-19660.	14.6	39
30	Ultrafast lithium-ion capacitors for efficient storage of energy generated by triboelectric nanogenerators. Energy Storage Materials, 2020, 24, 297-303.	18.0	29
31	Piezo-phototronic effect in InGaN/GaN semi-floating micro-disk LED arrays. Nano Energy, 2020, 67, 104218.	16.0	31
32	Vertically aligned NiS2/CoS2/MoS2 nanosheet array as an efficient and low-cost electrocatalyst for hydrogen evolution reaction in alkaline media. Science Bulletin, 2020, 65, 359-366.	9.0	45
33	Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy, 2020, 78, 105389.	16.0	186
34	Seawater Degradable Triboelectric Nanogenerators for Blue Energy. Advanced Materials Technologies, 2020, 5, 2000455.	5.8	32
35	Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for E-textile power sources. Nano Energy, 2020, 78, 105327.	16.0	97
36	Stretchable Textile Rechargeable Zn Batteries Enabled by a Wax Dyeing Method. Advanced Materials Technologies, 2020, 5, .	5.8	22

#	Article	IF	CITATIONS
37	Stretchable Coplanar Self-Charging Power Textile with Resist-Dyeing Triboelectric Nanogenerators and Microsupercapacitors. ACS Nano, 2020, 14, 5590-5599.	14.6	94
38	Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layer. RSC Advances, 2020, 10, 17752-17759.	3.6	102
39	A flexible triboelectric nanogenerator based on a super-stretchable and self-healable hydrogel as the electrode. Nanoscale, 2020, 12, 12753-12759.	5.6	45
40	Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries. Energy Storage Materials, 2020, 30, 104-112.	18.0	235
41	A flower-like CoS ₂ /MoS ₂ heteronanosheet array as an active and stable electrocatalyst toward the hydrogen evolution reaction in alkaline media. RSC Advances, 2020, 10, 8973-8981.	3.6	19
42	Stretchable, Transparent, and Thermally Stable Triboelectric Nanogenerators Based on Solventâ€Free Ionâ€Conducting Elastomer Electrodes. Advanced Functional Materials, 2020, 30, 1909252.	14.9	114
43	Self-powered electronic paper with energy supplies and information inputs solely from mechanical motions. Photonics Research, 2020, 8, 1496.	7.0	18
44	Atomistic insights into the reaction mechanism of nanostructured Lil: Implications for rechargeable Li-l2 batteries. Energy Storage Materials, 2019, 17, 211-219.	18.0	10
45	Stretchable multi-luminescent fibers with AlEgens. Journal of Materials Chemistry C, 2019, 7, 10769-10776.	5.5	30
46	Fluorescence Turn-On Visualization of Microscopic Processes for Self-Healing Gels by AlEgens and Anticounterfeiting Application. Chemistry of Materials, 2019, 31, 5683-5690.	6.7	52
47	Shape-Adaptive, Self-Healable Triboelectric Nanogenerator with Enhanced Performances by Soft Solid〓Solid Contact Electrification. ACS Nano, 2019, 13, 8936-8945.	14.6	121
48	Red Phosphorus/Onionâ€like Mesoporous Carbon Composite as Highâ€Performance Anode for Sodiumâ€lon Battery. ChemElectroChem, 2019, 6, 5721-5727.	3.4	13
49	Graphitic Mesoporous Carbon/Mn7C3 as Polysulfide Host for High Rate Li-S Batteries. Journal of the Electrochemical Society, 2019, 166, A2028-A2034.	2.9	11
50	Resist-Dyed Textile Alkaline Zn Microbatteries with Significantly Suppressed Zn Dendrite Growth. ACS Applied Materials & Interfaces, 2019, 11, 5095-5106.	8.0	43
51	Rational design of red phosphorus/reduced graphene oxide composites for stable sodium ion storage. Journal of Alloys and Compounds, 2019, 775, 1270-1276.	5.5	21
52	Highâ€Energy Asymmetric Supercapacitor Yarns for Selfâ€Charging Power Textiles. Advanced Functional Materials, 2019, 29, 1806298.	14.9	109
53	Enhanced photocurrent in InGaN/GaN MQWs solar cells by coupling plasmonic with piezo-phototronic effect. Nano Energy, 2019, 57, 300-306.	16.0	29
54	Revisiting the positive roles of liquid polysulfides in alkali metal–sulfur electrochemistry: from electrolyte additives to active catholyte. Nanoscale, 2019, 11, 21595-21621.	5.6	6

#	Article	IF	CITATIONS
55	Triboelectric-Nanogenerator-Based Soft Energy-Harvesting Skin Enabled by Toughly Bonded Elastomer/Hydrogel Hybrids. ACS Nano, 2018, 12, 2818-2826.	14.6	245
56	An effective approach to alleviating the thermal effect in microstripe array-LEDs <i>via</i> the piezo-phototronic effect. Materials Horizons, 2018, 5, 116-122.	12.2	20
57	Toward Wearable Selfâ€Charging Power Systems: The Integration of Energyâ€Harvesting and Storage Devices. Small, 2018, 14, 1702817.	10.0	274
58	Does the Mg–I ₂ Battery Suffer Severe Shuttle Effect?. Journal of Physical Chemistry C, 2018, 122, 28518-28527.	3.1	9
59	Self-powered electrochromic devices with tunable infrared intensity. Science Bulletin, 2018, 63, 795-801.	9.0	37
60	Self-Healable, Stretchable, Transparent Triboelectric Nanogenerators as Soft Power Sources. ACS Nano, 2018, 12, 6147-6155.	14.6	256
61	Hierarchically porous carbon/red phosphorus composite for high-capacity sodium-ion battery anode. Science Bulletin, 2018, 63, 982-989.	9.0	31
62	High areal capacity of Li-S batteries enabled by freestanding CNF/rGO electrode with high loading of lithium polysulfide. Electrochimica Acta, 2017, 241, 406-413.	5.2	44
63	Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Science Advances, 2017, 3, e1700015.	10.3	920
64	Largeâ€Area Allâ€Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals. Advanced Materials, 2017, 29, 1703700.	21.0	558
65	Enhanced Solar Cell Conversion Efficiency of InGaN/GaN Multiple Quantum Wells by Piezo-Phototronic Effect. ACS Nano, 2017, 11, 9405-9412.	14.6	87
66	Piezotronic effect tuned AlGaN/GaN high electron mobility transistor. Nanotechnology, 2017, 28, 455203.	2.6	29
67	Core–Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths. ACS Nano, 2017, 11, 12764-12771.	14.6	203
68	Electrical transportation and piezotronic-effect modulation in AlGaN/GaN MOS HEMTs and unpassivated HEMTs. Nano Energy, 2017, 39, 53-59.	16.0	36
69	Tunable Optical Modulator by Coupling a Triboelectric Nanogenerator and a Dielectric Elastomer. Advanced Functional Materials, 2017, 27, 1603788.	14.9	92
70	Robust Pb2+ sensor based on flexible ZnO/ZnS core-shell nanoarrays. Applied Physics Letters, 2016, 108, 153104.	3.3	3
71	Wearable Selfâ€Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators. Advanced Materials, 2016, 28, 98-105.	21.0	723
72	Piezo-Phototronic Effect in a Quantum Well Structure. ACS Nano, 2016, 10, 5145-5152.	14.6	63

#	Article	IF	CITATIONS
73	Enhanced performances of Li/polysulfide batteries with 3D reduced graphene oxide/carbon nanotube hybrid aerogel as the polysulfide host. Nano Energy, 2016, 30, 193-199.	16.0	55
74	Wearable Textileâ€Based Inâ€Plane Microsupercapacitors. Advanced Energy Materials, 2016, 6, 1601254.	19.5	201
75	Wearable Powerâ€Textiles by Integrating Fabric Triboelectric Nanogenerators and Fiberâ€Shaped Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2016, 6, 1601048.	19.5	266
76	Tuning carrier lifetime in InGaN/GaN LEDs via strain compensation for high-speed visible light communication. Scientific Reports, 2016, 6, 37132.	3.3	47
77	Efficient Charging of Liâ€lon Batteries with Pulsed Output Current of Triboelectric Nanogenerators. Advanced Science, 2016, 3, 1500255.	11.2	122
78	Freestanding Flag-Type Triboelectric Nanogenerator for Harvesting High-Altitude Wind Energy from Arbitrary Directions. ACS Nano, 2016, 10, 1780-1787.	14.6	268
79	Piezoâ€Phototronic Effect Controlled Dualâ€Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars. Small, 2015, 11, 6071-6077.	10.0	38
80	A Selfâ€Charging Power Unit by Integration of a Textile Triboelectric Nanogenerator and a Flexible Lithiumâ€ion Battery for Wearable Electronics. Advanced Materials, 2015, 27, 2472-2478.	21.0	646
81	Control of geometrical properties of carbon nanotube electrodes towards high-performance microbial fuel cells. Journal of Power Sources, 2015, 280, 347-354.	7.8	82
82	Simultaneously Improving Electrical Conductivity and Thermopower of Polyaniline Composites by Utilizing Carbon Nanotubes as High Mobility Conduits. ACS Applied Materials & Interfaces, 2015, 7, 9589-9597.	8.0	111
83	Scalable synthesis of bi-functional high-performance carbon nanotube sponge catalysts and electrodes with optimum C–N–Fe coordination for oxygen reduction reaction. Energy and Environmental Science, 2015, 8, 1799-1807.	30.8	138
84	Trapping Polysulfides Catholyte in Carbon Nanofiber Sponges for Improving the Performances of Sulfur Batteries. Journal of the Electrochemical Society, 2015, 162, A1396-A1400.	2.9	20
85	Piezotronic Effect in Polarity-Controlled GaN Nanowires. ACS Nano, 2015, 9, 8578-8583.	14.6	73
86	Liquidâ€Type Cathode Enabled by 3D Spongeâ€Like Carbon Nanotubes for High Energy Density and Long Cycling Life of Liâ€S Batteries. Advanced Materials, 2014, 26, 7456-7461.	21.0	109
87	Safe and reliable operation of sulfur batteries with lithiated silicon. Nano Energy, 2014, 9, 318-324.	16.0	48
88	Facile charge carrier adjustment for improving thermopower of doped polyaniline. Polymer, 2013, 54, 1136-1140.	3.8	54
89	Enhanced overcharge performance of nano-LiCoO2 by novel Li3VO4 surface coatings. Nanoscale, 2012, 4, 6743.	5.6	52
90	Functional surface modifications on nanostructured LiCoO2 with lithium vanadates. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	15

#	Article	IF	CITATIONS
91	Effect of precipitate morphology evolution on the strength–toughness relationship in Al–Mg–Si alloys. Scripta Materialia, 2009, 60, 1109-1112.	5.2	31
92	Aging-dependent coupling effect of multiple precipitates on the ductile fracture of heat-treatable aluminum alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 499, 387-395.	5.6	21
93	Coupling effect of multiple precipitates on the ductile fracture of aged Al–Mg–Si alloys. Scripta Materialia, 2007, 57, 865-868.	5.2	44