
Elin K Esbjörner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2995370/publications.pdf Version: 2024-02-01

FIIN K FSRIÄTONED

#	Article	IF	CITATIONS
1	Novel endosomolytic compounds enable highly potent delivery of antisense oligonucleotides. Communications Biology, 2022, 5, 185.	4.4	7
2	Label-free nanofluidic scattering microscopy of size and mass of single diffusing molecules and nanoparticles. Nature Methods, 2022, 19, 751-758.	19.0	30
3	A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery. Communications Biology, 2021, 4, 211.	4.4	45
4	Stealth Fluorescence Labeling for Live Microscopy Imaging of mRNA Delivery. Journal of the American Chemical Society, 2021, 143, 5413-5424.	13.7	27
5	Fluorescent base analogues in gapmers enable stealth labeling of antisense oligonucleotide therapeutics. Scientific Reports, 2021, 11, 11365.	3.3	5
6	Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles. ACS Nano, 2021, 15, 13993-14021.	14.6	74
7	Amyloid formation of bovine insulin is retarded in moderately acidic pH and by addition of short-chain alcohols. European Biophysics Journal, 2020, 49, 145-153.	2.2	15
8	Correlation between Cellular Uptake and Cytotoxicity of Fragmented α-Synuclein Amyloid Fibrils Suggests Intracellular Basis for Toxicity. ACS Chemical Neuroscience, 2020, 11, 233-241.	3.5	26
9	Novel clearance of muscle proteins by muscle cells. European Journal of Cell Biology, 2020, 99, 151127.	3.6	4
10	Amyloid formation of fish β-parvalbumin involves primary nucleation triggered by disulfide-bridged protein dimers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27997-28004.	7.1	15
11	Graphene oxide sheets and quantum dots inhibit α-synuclein amyloid formation by different mechanisms. Nanoscale, 2020, 12, 19450-19460.	5.6	33
12	Independent Size and Fluorescence Emission Determination of Individual Biological Nanoparticles Reveals that Lipophilic Dye Incorporation Does Not Scale with Particle Size. Langmuir, 2020, 36, 9693-9700.	3.5	6
13	Redox-Dependent Copper Ion Modulation of Amyloid-β (1-42) Aggregation In Vitro. Biomolecules, 2020, 10, 924.	4.0	16
14	Role of Membrane Tension Sensitive Endocytosis and Rho GTPases in the Uptake of the Alzheimer's Disease Peptide Aβ(1-42). ACS Chemical Neuroscience, 2020, 11, 1925-1936.	3.5	7
15	Lipid vesicle composition influences the incorporation and fluorescence properties of the lipophilic sulphonated carbocyanine dye SP-DiO. Physical Chemistry Chemical Physics, 2020, 22, 8781-8790.	2.8	14
16	The Liver and Kidneys mediate clearance of cardiac troponin in the rat. Scientific Reports, 2020, 10, 6791.	3.3	34
17	Using Tetracysteine-Tagged TDP-43 with a Biarsenical Dye To Monitor Real-Time Trafficking in a Cell Model of Amyotrophic Lateral Sclerosis. Biochemistry, 2019, 58, 4086-4095.	2.5	9
18	Copper Chaperone Atox1 Interacts with Cell Cycle Proteins. Computational and Structural Biotechnology Journal, 2018, 16, 443-449.	4.1	19

Elin K EsbjĶrner

#	Article	IF	CITATIONS
19	Cell surface proteoglycan-mediated uptake and accumulation of the Alzheimer's disease peptide Aβ(1–42). Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2204-2214.	2.6	13
20	A nano flow cytometer for single lipid vesicle analysis. Lab on A Chip, 2017, 17, 830-841.	6.0	66
21	Binding of Thioflavin-T to Amyloid Fibrils Leads to Fluorescence Self-Quenching and Fibril Compaction. Biochemistry, 2017, 56, 2170-2174.	2.5	53
22	Endocytic uptake of monomeric amyloid-β peptides is clathrin- and dynamin-independent and results in selective accumulation of Aβ(1–42) compared to Aβ(1–40). Scientific Reports, 2017, 7, 2021.	3.3	80
23	Lipid membranes catalyse the fibril formation of the amyloid-β (1–42) peptide through lipid-fibril interactions that reinforce secondary pathways. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1921-1929.	2.6	90
24	Detection of amyloid-β fibrils using the DNA-intercalating dye YOYO-1: Binding mode and fibril formation kinetics. Biochemical and Biophysical Research Communications, 2016, 469, 313-318.	2.1	10
25	Solvent exposure of Tyr10 as a probe of structural differences between monomeric and aggregated forms of the amyloid-l² peptide. Biochemical and Biophysical Research Communications, 2015, 468, 696-701.	2.1	11
26	Steady-state and time-resolved Thioflavin-T fluorescence can report on morphological differences in amyloid fibrils formed by Aβ(1-40) and Aβ(1-42). Biochemical and Biophysical Research Communications, 2015, 458, 418-423.	2.1	97
27	Single Point Mutations Induce a Switch in the Molecular Mechanism of the Aggregation of the Alzheimer's Disease Associated Al² ₄₂ Peptide. ACS Chemical Biology, 2014, 9, 378-382.	3.4	25
28	Direct Observations of Amyloid β Self-Assembly in Live Cells Provide Insights into Differences in the Kinetics of Aβ(1–40) and Aβ(1–42) Aggregation. Chemistry and Biology, 2014, 21, 732-742.	6.0	111
29	Nanobodies Raised against Monomeric α-Synuclein Distinguish between Fibrils at Different Maturation Stages. Journal of Molecular Biology, 2013, 425, 2397-2411.	4.2	90
30	Cell surface binding and uptake of arginine- and lysine-rich penetratin peptides in absence and presence of proteoglycans. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2669-2678.	2.6	118
31	Effects of Tryptophan Content and Backbone Spacing on the Uptake Efficiency of Cell-Penetrating Peptides. Biochemistry, 2012, 51, 5531-5539.	2.5	109
32	In Situ Measurements of the Formation and Morphology of Intracellular β-Amyloid Fibrils by Super-Resolution Fluorescence Imaging. Journal of the American Chemical Society, 2011, 133, 12902-12905.	13.7	151
33	Tryptophan orientations in membrane-bound gramicidin and melittin—a comparative linear dichroism study on transmembrane and surface-bound peptides. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 219-228.	2.6	22
34	Binding of cell-penetrating penetratin peptides to plasma membrane vesicles correlates directly with cellular uptake. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1860-1867.	2.6	37
35	Interactions between a luminescent conjugated polyelectrolyte and amyloid fibrils investigated with flow linear dichroism spectroscopy. Biochemical and Biophysical Research Communications, 2011, 408, 115-119.	2.1	18
36	Probing small molecule binding to amyloid fibrils. Physical Chemistry Chemical Physics, 2011, 13, 20044.	2.8	36

Elin K EsbjĶrner

#	Article	IF	CITATIONS
37	Effects of PEGylation and Acetylation of PAMAM Dendrimers on DNA Binding, Cytotoxicity and <i>in Vitro</i> Transfection Efficiency. Molecular Pharmaceutics, 2010, 7, 1734-1746.	4.6	119
38	ANS Binding Reveals Common Features of Cytotoxic Amyloid Species. ACS Chemical Biology, 2010, 5, 735-740.	3.4	335
39	Dual functions of the human antimicrobial peptide LL-37—Target membrane perturbation and host cell cargo delivery. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 2201-2208.	2.6	90
40	Assigning Membrane Binding Geometry of Cytochrome c by Polarized Light Spectroscopy. Biophysical Journal, 2009, 96, 3399-3411.	0.5	21
41	DNA Condensation by PAMAM Dendrimers:  Self-Assembly Characteristics and Effect on Transcription. Biochemistry, 2008, 47, 1732-1740.	2.5	102
42	Stimulated endocytosis in penetratin uptake: Effect of arginine and lysine. Biochemical and Biophysical Research Communications, 2008, 371, 621-625.	2.1	125
43	Counterion-mediated membrane penetration: Cationic cell-penetrating peptides overcome Born energy barrier by ion-pairing with phospholipids. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1550-1558.	2.6	58
44	Tryptophan orientation in model lipid membranes. Biochemical and Biophysical Research Communications, 2007, 361, 645-650.	2.1	43
45	Retinoid Chromophores as Probes of Membrane Lipid Order. Journal of Physical Chemistry B, 2007, 111, 10839-10848.	2.6	25
46	Membrane Binding of pH-Sensitive Influenza Fusion Peptides. Positioning, Configuration, and Induced Leakage in a Lipid Vesicle Model. Biochemistry, 2007, 46, 13490-13504.	2.5	53
47	Membrane Interactions of Cell-Penetrating Peptides Probed by Tryptophan Fluorescence and Dichroism Techniques:  Correlations of Structure to Cellular Uptake. Biochemistry, 2006, 45, 7682-7692.	2.5	97
48	Membrane Binding and Translocation of Cell-Penetrating Peptidesâ€. Biochemistry, 2004, 43, 3471-3489.	2.5	194
49	Vesicle size-dependent translocation of penetratin analogs across lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2004, 1665, 142-155.	2.6	52
50	Meso Stereoisomer as a Probe of Enantioselective Threading Intercalation of Semirigid Ruthenium Complex [μ-(11,11â€~-bidppz)(phen)4Ru2]4+. Journal of Physical Chemistry B, 2003, 107, 11784-11793.	2.6	47