Tomi Laurila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2994996/publications.pdf

Version: 2024-02-01

109264 102432 5,242 143 35 66 citations h-index g-index papers 148 148 148 4058 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Carbonaceous Nanomaterials for Electrochemical Biosensing. , 2022, , .		O
2	Nanoscale geometry determines mechanical biocompatibility of vertically aligned nanofibers. Acta Biomaterialia, 2022, 146, 235-247.	4.1	6
3	Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and <i>GW</i> . Chemistry of Materials, 2022, 34, 6240-6254.	3.2	22
4	Electrochemical Detection of Morphine in Untreated Human Capillary Whole Blood. ACS Omega, 2021, 6, 11563-11569.	1.6	17
5	Functionalized Nanocellulose/Multiwalled Carbon Nanotube Composites for Electrochemical Applications. ACS Applied Nano Materials, 2021, 4, 5842-5853.	2.4	13
6	What Determines the Electrochemical Properties of Nitrogenated Amorphous Carbon Thin Films?. Chemistry of Materials, 2021, 33, 6813-6824.	3.2	10
7	Connection between the physicochemical characteristics of amorphous carbon thin films and their electrochemical properties. Journal of Physics Condensed Matter, 2021, 33, 434002.	0.7	2
8	X-ray Spectroscopy Fingerprints of Pristine and Functionalized Graphene. Journal of Physical Chemistry C, 2021, 125, 18234-18246.	1.5	9
9	Nanostructured Geometries Strongly Affect Fouling of Carbon Electrodes. ACS Omega, 2021, 6, 26391-26403.	1.6	20
10	Rapid industrial scale synthesis of robust carbon nanotube network electrodes for electroanalysis. Journal of Electroanalytical Chemistry, 2021, 896, 115255.	1.9	8
11	Trends in Carbon, Oxygen, and Nitrogen Core in the X-ray Absorption Spectroscopy of Carbon Nanomaterials: A Guide for the Perplexed. Journal of Physical Chemistry C, 2021, 125, 973-988.	1.5	30
12	Integrating Carbon Nanomaterials with Metals for Bio-sensing Applications. Molecular Neurobiology, 2020, 57, 179-190.	1.9	21
13	Effect of Electrochemical Oxidation on Physicochemical Properties of Fe ontaining Singleâ€Walled Carbon Nanotubes. ChemElectroChem, 2020, 7, 4136-4143.	1.7	4
14	Biofouling affects the redox kinetics of outer and inner sphere probes on carbon surfaces drastically differently $\hat{a} \in \text{``implications to biosensing. Physical Chemistry Chemical Physics, 2020, 22, 16630-16640.}$	1.3	11
15	Time-Based Sensor Interface for Dopamine Detection. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 3284-3296.	3.5	3
16	Machine learning driven simulated deposition of carbon films: From low-density to diamondlike amorphous carbon. Physical Review B, 2020, 102, .	1.1	44
17	Disposable Nafion-Coated Single-Walled Carbon Nanotube Test Strip for Electrochemical Quantitative Determination of Acetaminophen in a Finger-Prick Whole Blood Sample. Analytical Chemistry, 2020, 92, 13017-13024.	3.2	29
18	Electrochemical Detection of Oxycodone and Its Main Metabolites with Nafion-Coated Single-Walled Carbon Nanotube Electrodes. Analytical Chemistry, 2020, 92, 8218-8227.	3.2	31

#	Article	IF	Citations
19	Single-Walled Carbon Nanotube Network Electrodes for the Detection of Fentanyl Citrate. ACS Applied Nano Materials, 2020, 3, 1203-1212.	2.4	28
20	Undoped Tetrahedral Amorphous Carbon (ta-C) Thin Films for Biosensing. , 2020, , 11-1-11-15.		0
21	Simultaneous Detection of Morphine and Codeine in the Presence of Ascorbic Acid and Uric Acid and in Human Plasma at Nafion Single-Walled Carbon Nanotube Thin-Film Electrode. ACS Omega, 2019, 4, 17726-17734.	1.6	33
22	In-situ functionalization of tetrahedral amorphous carbon by filtered cathodic arc deposition. AIP Advances, 2019, 9, 085325.	0.6	3
23	Understanding X-ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part II: Quantitative Fitting of Spectra. Chemistry of Materials, 2019, 31, 9256-9267.	3.2	49
24	Understanding X-ray Spectroscopy of Carbonaceous Materials by Combining Experiments, Density Functional Theory, and Machine Learning. Part I: Fingerprint Spectra. Chemistry of Materials, 2019, 31, 9243-9255.	3.2	62
25	Fabrication of Micro- and Nanopillars from Pyrolytic Carbon and Tetrahedral Amorphous Carbon. Micromachines, 2019, 10, 510.	1.4	11
26	Multiwalled Carbon Nanotubes/Nanofibrillar Cellulose/Nafion Composite-Modified Tetrahedral Amorphous Carbon Electrodes for Selective Dopamine Detection. Journal of Physical Chemistry C, 2019, 123, 24826-24836.	1.5	30
27	Effect of thickness and additional elements on the filtering properties of a thin Nafion layer. Journal of Electroanalytical Chemistry, 2019, 843, 12-21.	1.9	8
28	Effect of Power Density on the Electrochemical Properties of Undoped Amorphous Carbon (a) Thin Films. Electroanalysis, 2019, 31, 746-755.	1.5	6
29	Hybrid X-ray Spectroscopy-Based Approach To Acquire Chemical and Structural Information of Single-Walled Carbon Nanotubes with Superior Sensitivity. Journal of Physical Chemistry C, 2019, 123, 6114-6120.	1.5	9
30	A Sensor Interface for Neurochemical Signal Acquisition. , 2019, , .		1
31	Simultaneous electrochemical detection of tramadol and O-desmethyltramadol with Nafion-coated tetrahedral amorphous carbon electrode. Electrochimica Acta, 2019, 295, 347-353.	2.6	30
32	Growth Mechanism and Origin of High <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>s</mml:mi><mml:msup><mml:mi>p</mml:mi>) content in Tetrahedral Amorphous Carbon. Physical Review Letters, 2018, 120, 166101.</mml:msup></mml:math>	2nd:mat	th>128
33	Electrochemical Fouling of Dopamine and Recovery of Carbon Electrodes. Analytical Chemistry, 2018, 90, 1408-1416.	3.2	84
34	Selective detection of morphine in the presence of paracetamol with anodically pretreated dual layer Ti/tetrahedral amorphous carbon electrodes. Electrochemistry Communications, 2018, 86, 166-170.	2.3	21
35	Pt-grown carbon nanofibers for enzymatic glutamate biosensors and assessment of their biocompatibility. RSC Advances, 2018, 8, 35802-35812.	1.7	22
36	Analysis of catechol, 4-methylcatechol and dopamine electrochemical reactions on different substrate materials and pH conditions. Electrochimica Acta, 2018, 292, 309-321.	2.6	16

#	Article	IF	CITATIONS
37	Computational Surface Chemistry of Tetrahedral Amorphous Carbon by Combining Machine Learning and Density Functional Theory. Chemistry of Materials, 2018, 30, 7438-7445.	3.2	69
38	Reactivity of Amorphous Carbon Surfaces: Rationalizing the Role of Structural Motifs in Functionalization Using Machine Learning. Chemistry of Materials, 2018, 30, 7446-7455.	3.2	77
39	Pt-grown carbon nanofibers for detection of hydrogen peroxide. RSC Advances, 2018, 8, 12742-12751.	1.7	12
40	Unmodified and multi-walled carbon nanotube modified tetrahedral amorphous carbon (ta-C) films as in vivo sensor materials for sensitive and selective detection of dopamine. Biosensors and Bioelectronics, 2018, 118, 23-30.	5.3	44
41	Characterization and electrochemical properties of iron-doped tetrahedral amorphous carbon (ta-C) thin films. RSC Advances, 2018, 8, 26356-26363.	1.7	12
42	Application-Specific Catalyst Layers: Pt-Containing Carbon Nanofibers for Hydrogen Peroxide Detection. ACS Omega, 2017, 2, 496-507.	1.6	21
43	Carbon Nanostructure Based Platform for Enzymatic Glutamate Biosensors. Journal of Physical Chemistry C, 2017, 121, 4618-4626.	1.5	27
44	Hybrid carbon based nanomaterials for electrochemical detection of biomolecules. Progress in Materials Science, 2017, 88, 499-594.	16.0	137
45	Defects, Driving Forces and Definitions of Diffusion Coefficients in Solids. , 2017, , 1-54.		4
46	Partially Reduced Graphene Oxide Modified Tetrahedral Amorphous Carbon Thin-Film Electrodes as a Platform for Nanomolar Detection of Dopamine. Journal of Physical Chemistry C, 2017, 121, 8153-8164.	1.5	26
47	Electron transport determines the electrochemical properties of tetrahedral amorphous carbon (ta-C) thin films. Electrochimica Acta, 2017, 225, 1-10.	2.6	49
48	Amorphous carbon thin film electrodes with intrinsic Pt-gradient for hydrogen peroxide detection. Electrochimica Acta, 2017, 251, 60-70.	2.6	10
49	Thermodynamic-Kinetic Method on Microstructural Evolutions in Electronics., 2017,, 101-147.		1
50	Redox Potentials from Ab Initio Molecular Dynamics and Explicit Entropy Calculations: Application to Transition Metals in Aqueous Solution. Journal of Chemical Theory and Computation, 2017, 13, 3432-3441.	2.3	18
51	SU-8 based pyrolytic carbon for the electrochemical detection of dopamine. Journal of Materials Chemistry B, 2017, 5, 9033-9044.	2.9	30
52	Doping as a means to probe the potential dependence of dopamine adsorption on carbon-based surfaces: A first-principles study. Journal of Chemical Physics, 2017, 146, 234704.	1.2	13
53	Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability. Biosensors and Bioelectronics, 2017, 88, 273-282.	5.3	41
54	Microstructural Evolution and Mechanical Properties in (AuSn)eut-Cu Interconnections. Journal of Electronic Materials, 2016, 45, 5478-5486.	1.0	12

#	Article	IF	CITATIONS
55	Accurate schemes for calculation of thermodynamic properties of liquid mixtures from molecular dynamics simulations. Journal of Chemical Physics, 2016, 145, 244504.	1.2	38
56	What Does Nitric Acid Really Do to Carbon Nanofibers?. Journal of Physical Chemistry C, 2016, 120, 22655-22662.	1.5	19
57	Characterization and Electrochemical Properties of Oxygenated Amorphous Carbon (a-C) Films. Electrochimica Acta, 2016, 220, 137-145.	2.6	18
58	Correlation between sp ³ -to-sp ² Ratio and Surface Oxygen Functionalities in Tetrahedral Amorphous Carbon (ta-C) Thin Film Electrodes and Implications of Their Electrochemical Properties. Journal of Physical Chemistry C, 2016, 120, 8298-8304.	1.5	43
59	The role of extra carbon source during the pre-annealing stage in the growth of carbon nanofibers. Carbon, 2016, 100, 351-354.	5.4	9
60	Structural morphology of carbon nanofibers grown on different substrates. Carbon, 2016, 98, 343-351.	5.4	25
61	Microstructural Evolution and Mechanical Properties of Au-20wt.%Sn Ni Interconnection. Journal of Electronic Materials, 2016, 45, 566-575.	1.0	15
62	Effect of Ni content on the diffusion-controlled growth of the product phases in the Cu(Ni)–Sn system. Philosophical Magazine, 2016, 96, 15-30.	0.7	28
63	Understanding the Growth of Interfacial Reaction Product Layers between Dissimilar Materials. Critical Reviews in Solid State and Materials Sciences, 2016, 41, 73-105.	6.8	5
64	Cycle aging of commercial NMC/graphite pouch cells at different temperatures. Applied Energy, 2015, 154, 160-172.	5.1	191
65	Trifluoroacetylazobenzene for optical and electrochemical detection of amines. Journal of Materials Chemistry A, 2015, 3, 4687-4694.	5.2	38
66	Hybrid carbon nanomaterials for electrochemical detection of biomolecules. Physica Scripta, 2015, 90, 094006.	1.2	3
67	Carbon nanotube (CNT) forest grown on diamond-like carbon (DLC) thin films significantly improves electrochemical sensitivity and selectivity towards dopamine. Sensors and Actuators B: Chemical, 2015, 211, 177-186.	4.0	52
68	Energy band alignment and electronic states of amorphous carbon surfaces in vacuo and in aqueous environment. Journal of Applied Physics, 2015, 117, 034502.	1.1	9
69	Ultrathin undoped tetrahedral amorphous carbon films: thickness dependence of the electronic structure and implications for their electrochemical behaviour. Physical Chemistry Chemical Physics, 2015, 17, 9020-9031.	1.3	18
70	Electrochemical detection of hydrogen peroxide on platinum-containing tetrahedral amorphous carbon sensors and evaluation of their biofouling properties. Materials Science and Engineering C, 2015, 55, 70-78.	3.8	17
71	Multi-walled carbon nanotubes (MWCNTs) grown directly on tetrahedral amorphous carbon (ta-C): An interfacial study. Diamond and Related Materials, 2015, 56, 54-59.	1.8	11
72	Ultrathin undoped tetrahedral amorphous carbon films: The role of the underlying titanium layer on the electronic structure. Diamond and Related Materials, 2015, 57, 43-52.	1.8	18

#	Article	IF	Citations
73	Integrated Carbon Nanostructures for Detection of Neurotransmitters. Molecular Neurobiology, 2015, 52, 859-866.	1.9	37
74	Glutamate detection by amino functionalized tetrahedral amorphous carbon surfaces. Talanta, 2015, 141, 175-181.	2.9	22
75	Piezoelectric coefficients and spontaneous polarization of ScAlN. Journal of Physics Condensed Matter, 2015, 27, 245901.	0.7	209
76	Electrochemical reactions of catechol, methylcatechol and dopamine at tetrahedral amorphous carbon (ta-C) thin film electrodes. Diamond and Related Materials, 2015, 59, 30-39.	1.8	59
77	Understanding the effect of electromigration on the growth of interfacial reaction layers in Cu-Sn and Cu-Ni-Sn systems. , 2014 , , .		0
78	Carbon thin films as electrode material in neural sensing. Surface and Coatings Technology, 2014, 259, 33-38.	2.2	28
79	Thermodynamics, Diffusion and the Kirkendall Effect in Solids. , 2014, , .		132
80	New electrochemically improved tetrahedral amorphous carbon films for biological applications. Diamond and Related Materials, 2014, 49, 62-71.	1.8	45
81	Role of different factors affecting interdiffusion in Cu(Ga) and Cu(Si) solid solutions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20130464.	1.0	13
82	Heat generation in high power prismatic Li-ion battery cell with LiMnNiCoO ₂ cathode material. International Journal of Energy Research, 2014, 38, 1424-1437.	2.2	78
83	Thermodynamic reassessment of Au–Cu–Sn ternary system. Journal of Alloys and Compounds, 2014, 588, 449-460.	2.8	19
84	Diamond-like carbon (DLC) thin film bioelectrodes: Effect of thermal post-treatments and the use of Ti adhesion layer. Materials Science and Engineering C, 2014, 34, 446-454.	3.8	30
85	Thermodynamics, Phases, and Phase Diagrams. , 2014, , 1-86.		7
86	Atomic and electronic structure of tetrahedral amorphous carbon surfaces from density functional theory: Properties and simulation strategies. Carbon, 2014, 77, 1168-1182.	5.4	41
87	Development of Interdiffusion Zone in Different Systems. , 2014, , 141-166.		3
88	Phase Evolution in the AuCu/Sn System by Solid-State Reactive Diffusion. Journal of Electronic Materials, 2014, 43, 3357-3371.	1.0	4
89	Interdiffusion and the Kirkendall Effect in Binary Systems. , 2014, , 239-298.		1
90	Thermal simulation of high-power Li-ion battery with LiMn1/3Ni1/3Co1/3O2 cathode on cell and module levels. International Journal of Energy Research, 2014, 38, 564-572.	2.2	16

#	Article	IF	CITATIONS
91	Thermodynamic modeling of Au–Ce–Sn ternary system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2013, 42, 38-50.	0.7	20
92	Thermodynamic reassessment of Au–Ni–Sn ternary system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2013, 43, 61-70.	0.7	22
93	Effect of isothermal annealing and electromigration pre-treatments on the reliability of solder interconnections under vibration loading. Journal of Materials Science: Materials in Electronics, 2013, 24, 644-653.	1.1	5
94	Improving the function of dopamine electrodes with novel carbon materials., 2013, 2013, 632-4.		7
95	Simulation of Dynamic Recrystallization in Solder Interconnections During Thermal Cycling. , 2013, , .		0
96	Interfacial Adhesion in Polymer Systems. Microsystems, 2012, , 101-133.	0.3	3
97	Interfacial reactions between SnAg1.0Ti and Ni metallization. Journal of Materials Science: Materials in Electronics, 2012, 23, 2030-2034.	1.1	0
98	Finite element modeling for reliability assessment of solder interconnections in a power transistor. , 2012, , .		0
99	Analysis of microstructural evolution in SLID-bonding used for hermetic encapsulation of MEMS devices. , 2012, , .		1
100	Comments on "Effects of current density on the formation and microstructure of Sn–9Zn, Sn–8Zn–3Bi and Sn–3Ag–0.5Cu solder joints― Intermetallics, 2012, 28, 164-165.	1.8	2
101	Thermodynamic assessment of Au–Ho and Au–Tm binary systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2012, 37, 87-93.	0.7	9
102	The Combined Effect of Shock Impacts and Operational Power Cycles on the Reliability of Handheld Device Component Board Interconnections. Journal of Electronic Materials, 2012, 41, 3232-3246.	1.0	6
103	Effect of Isothermal Aging and Electromigration on the Microstructural Evolution of Solder Interconnections During Thermomechanical Loading. Journal of Electronic Materials, 2012, 41, 3179-3195.	1.0	6
104	Effect of Ti on the interfacial reaction between Sn and Cu. Journal of Materials Science: Materials in Electronics, 2012, 23, 68-74.	1.1	16
105	Evolution of Different Types of Interfacial Structures. Microsystems, 2012, , 135-211.	0.3	0
106	Introduction to Thermodynamic-Kinetic Method. Microsystems, 2012, , 45-100.	0.3	1
107	Thermal investigation of a battery module for work machines. , 2011, , .		2
108	Thermodynamic assessment of Au–La and Au–Er binary systems. Journal of Alloys and Compounds, 2011, 509, 4439-4444.	2.8	9

#	Article	IF	Citations
109	Diffusion and Growth of the $\hat{1}^{1}\!\!/\!\!4$ Phase (Ni6Nb7) in the Ni-Nb System. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 1727-1731.	1.1	9
110	Effect of Constant and Cyclic Current Stressing on the Evolution of Intermetallic Compound Layers. Journal of Electronic Materials, 2011, 40, 1517-1526.	1.0	14
111	Impurity and alloying effects on interfacial reaction layers in Pb-free soldering. Materials Science and Engineering Reports, 2010, 68, 1-38.	14.8	288
112	On the role of electromigration in power cycling tests. , 2010, , .		0
113	Study on the Growth of Nb ₃ Sn Superconductor in Cu(Sn)/Nb Diffusion Couple. Defect and Diffusion Forum, 2010, 297-301, 467-471.	0.4	0
114	Diffusion and growth mechanism of Nb3Sn superconductor grown by bronze technique. Applied Physics Letters, 2010, 96, .	1.5	29
115	Simulation of dynamic recrystallization in solder interconnections during thermal cycling. Computational Materials Science, 2010, 50, 690-697.	1.4	28
116	Reliability of Lead-Free Solder Interconnections in Thermal and Power Cycling Tests. IEEE Transactions on Components and Packaging Technologies, 2009, 32, 302-308.	1.4	41
117	Combined Thermodynamic-Kinetic Analysis of the Interfacial Reactions between Ni Metallization and Various Lead-Free Solders. Materials, 2009, 2, 1796-1834.	1.3	23
118	Determination of diffusion parameters and activation energy of diffusion in V3Si phase with A15 crystal structure. Scripta Materialia, 2009, 60, 377-380.	2.6	21
119	Effect of Ag, Fe, Au and Ni on the growth kinetics of Sn–Cu intermetallic compound layers. Microelectronics Reliability, 2009, 49, 242-247.	0.9	94
120	Understanding materials compatibility issues in electronics packaging. , 2009, , .		0
121	Formation of Intermetallic Compounds Between Liquid Sn and Various CuNi x Metallizations. Journal of Electronic Materials, 2008, 37, 792-805.	1.0	92
122	Evolution of microstructure and failure mechanism of lead-free solder interconnections in power cycling and thermal shock tests. Microelectronics Reliability, 2007, 47, 1135-1144.	0.9	68
123	Solid-State Reactions between Cu(Ni) Alloys and Sn. Journal of Electronic Materials, 2007, 36, 1355-1362.	1.0	74
124	Reactive blending approach to modify spin-coated epoxy film: Part II. Crosslinking kinetics. Journal of Applied Polymer Science, 2006, 101, 3689-3696.	1.3	3
125	Reactive blending approach to modify spin-coated epoxy film: Part I. Synthesis and characterization of star-shaped poly(ε-caprolactone). Journal of Applied Polymer Science, 2006, 101, 3677-3688.	1.3	11
126	A Comparative Study of Power Cycling and Thermal Shock Tests. , 2006, , .		3

#	Article	IF	Citations
127	Phase formation between lead-free Sn–Ag–Cu solder and Ni(P)∕Au finishes. Journal of Applied Physics, 2006, 99, 023530.	1.1	51
128	Evaluation of electrolessly deposited NiP integral resistors on flexible polyimide substrate. Microelectronics Reliability, 2005, 45, 665-673.	0.9	3
129	Interfacial reactions between lead-free solders and common base materials. Materials Science and Engineering Reports, 2005, 49, 1-60.	14.8	971
130	Analysis of the redeposition of AuSn4 on Ni/Au contact pads when using SnPbAg, SnAg, and SnAgCu solders. Journal of Electronic Materials, 2005, 34, 103-111.	1.0	34
131	Interfacial reactions in the Si/TaC/Cu system. Microelectronic Engineering, 2004, 71, 301-309.	1.1	16
132	Analyses of interfacial reactions at different levels of interconnection. Materials Science in Semiconductor Processing, 2004, 7, 307-317.	1.9	20
133	Reactive Phase Formation in Thin Film Metal/Metal and Metal/Silicon Diffusion Couples. Critical Reviews in Solid State and Materials Sciences, 2003, 28, 185-230.	6.8	44
134	TaC as a diffusion barrier between Si and Cu. Journal of Applied Physics, 2002, 91, 5391-5399.	1.1	46
135	Amorphous layer formation at the TaC/Cu interface in the Si/TaC/Cu metallization system. Applied Physics Letters, 2002, 80, 938-940.	1.5	24
136	Effect of oxygen on the reactions in Si/Ta/Cu and Si/TaC/Cu systems. Microelectronic Engineering, 2002, 64, 279-287.	1.1	7
137	Reactive sputter deposition and properties of TaxN thin films. Microelectronic Engineering, 2002, 64, 289-297.	1.1	144
138	Evaluation of the surface free energy of spin-coated photodefinable epoxy. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 2137-2149.	2.4	22
139	Tantalum carbide and nitride diffusion barriers for Cu metallisation. Microelectronic Engineering, 2002, 60, 71-80.	1.1	47
140	Effect of oxygen on the reactions in the Si/Ta/Cu metallization system. Journal of Materials Research, 2001, 16, 2939-2946.	1.2	27
141	Reliability of Tantalum Based Diffusion Barriers between Cu and Si. Materials Research Society Symposia Proceedings, 2000, 612, 741.	0.1	4
142	Chemical stability of Ta diffusion barrier between Cu and Si. Thin Solid Films, 2000, 373, 64-67.	0.8	39
143	Failure mechanism of Ta diffusion barrier between Cu and Si. Journal of Applied Physics, 2000, 88, 3377-3384.	1.1	82