
Cheryl A Hillery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2994936/publications.pdf Version: 2024-02-01

CHEDVI Δ ΗΠΙΕDV

#	Article	IF	CITATIONS
1	IL-18 mediates sickle cell cardiomyopathy and ventricular arrhythmias. Blood, 2021, 137, 1208-1218.	1.4	22
2	Impaired Bile Secretion Promotes Hepatobiliary Injury in Sickle Cell Disease. Hepatology, 2020, 72, 2165-2181.	7.3	12
3	HMCB1-Mediated Platelet Activation Is Independent of Platelet Mitochondrial Reactive Oxygen Species Generation. Blood, 2020, 136, 6-6.	1.4	Ο
4	A Pilot Study to Evaluate the Feasibility of Anti-Fibrinolytic Agents in Reducing Hemorrhagic Complications in Pediatric Patients with Thrombocytopenia. Blood, 2020, 136, 3-3.	1.4	0
5	Redox signaling in sickle cell disease. Current Opinion in Physiology, 2019, 9, 26-33.	1.8	14
6	Circulating Neutrophil Extracellular Traps in the Pathogenesis of Acute Chest Syndrome of Sickle Cell Disease. Blood, 2019, 134, 3556-3556.	1.4	0
7	Chemokine (c-c motif) receptor 2 mediates mechanical and cold hypersensitivity in sickle cell disease mice. Pain, 2018, 159, 1652-1663.	4.2	25
8	HMGB1 As a Novel Platelet Agonist That Acts Synergistically with ADP to Activate Platelets in Sickle Cell Disease. Blood, 2018, 132, 1073-1073.	1.4	0
9	Characterization of a mouse model of sickle cell trait: parallels to human trait and a novel finding of cutaneous sensitization. British Journal of Haematology, 2017, 179, 657-666.	2.5	8
10	Determining the longitudinal validity and meaningful differences in HRQL of the PedsQLâ,,¢ Sickle Cell Disease Module. Health and Quality of Life Outcomes, 2017, 15, 124.	2.4	26
11	Dietary supplementation with docosahexanoic acid (DHA) increases red blood cell membrane flexibility in mice with sickle cell disease. Blood Cells, Molecules, and Diseases, 2015, 54, 183-188.	1.4	23
12	The Neuropeptide Substance P Is Elevated in Patients with Sickle Cell Disease. Blood, 2015, 126, 2190-2190.	1.4	0
13	Anion Exchange HPLC Isolation of High-Density Lipoprotein (HDL) and On-Line Estimation of Proinflammatory HDL. PLoS ONE, 2014, 9, e91089.	2.5	14
14	Circulating membrane-derived microvesicles in redox biology. Free Radical Biology and Medicine, 2014, 73, 214-228.	2.9	40
15	Cold hypersensitivity increases with age in mice with sickle cell disease. Pain, 2014, 155, 2476-2485.	4.2	54
16	Sickle cell disease increases high mobility group box 1: a novel mechanism of inflammation. Blood, 2014, 124, 3978-3981.	1.4	48
17	Evidence for Transient Acute Liver Injury in Mouse Models of Sickle Cell Disease during Steady State Health. Blood, 2014, 124, 1373-1373.	1.4	2
18	Patients with sickle cell disease have increased sensitivity to cold and heat. American Journal of Hematology, 2013, 88, 37-43.	4.1	127

CHERYL A HILLERY

#	Article	IF	CITATIONS
19	Inhibition of myeloperoxidase decreases vascular oxidative stress and increases vasodilatation in sickle cell disease mice. Journal of Lipid Research, 2013, 54, 3009-3015.	4.2	37
20	Transient receptor potential vanilloid 1 mediates pain in mice with severe sickle cell disease. Blood, 2011, 118, 3376-3383.	1.4	133
21	Patients with Sickle Cell Disease Have Increased Sensitivity to Cold and Heat Stimuli, 2. Blood, 2011, 118, 2116-2116.	1.4	2
22	A Novel Hemoglobin Binding Peptide Increases Intracellular Heme and Potentiates Hemoglobin-Induced HO-1 Levels in Endothelial Cells. Blood, 2011, 118, 1065-1065.	1.4	0
23	Low Molecular Weight Heparin Reduces sVCAM-1 and Lung Congestion In a Murine Model of Sickle Cell Disease. Blood, 2010, 116, 1635-1635.	1.4	4
24	A Novel Hemoglobin-Binding Agent Reduces Plasma Free Hemoglobin and Partially Improves Vascular Function In Murine Hemolytic Anemia. Blood, 2010, 116, 267-267.	1.4	4
25	The Protein C Pathway in Human and Murine Sickle Cell Disease: Alterations in Protein C, Thrombomodulin (TM), and Endothelial Protein C Receptor (EPCR) at Baseline and during Acute Vaso-Occlusion. Blood, 2008, 112, 538-538.	1.4	8
26	Vascular Dysfunction in Murine Models of Hemolytic Anemia Blood, 2007, 110, 846-846.	1.4	0
27	Proinflammatory Lipids in Sickle Cell Disease-Associated Pulmonary Hypertension Blood, 2007, 110, 3801-3801.	1.4	0
28	Pathology of Berkeley sickle cell mice: similarities and differences with human sickle cell disease. Blood, 2006, 107, 1651-1658.	1.4	123
29	Reciprocal binding of xanthine oxidase and myeloperoxidase with ApoAâ€I correlates with HDL anti―and proâ€inflammatory properties. FASEB Journal, 2006, 20, A198.	0.5	2
30	Phase I Study of Combination Treatment with Hydroxyurea and Magnesium Pidolate in Children with Sickle Cell Anemia Blood, 2006, 108, 686-686.	1.4	0
31	Modifications of the Coagulation System Alter Inflammation in Murine Sickle Cell Disease Blood, 2006, 108, 1242-1242.	1.4	Ο
32	Genetic Influence on the Systems Biology of Sickle Stroke Risk Detected by Endothelial Gene Expression Blood, 2005, 106, 73-73.	1.4	3
33	AMP Deaminase Activation Contributes to Accelerated Adenine Nucleotide Pool Depletion during Periods of Energy Imbalance in Sickle Cell Erythrocytes Blood, 2005, 106, 1671-1671.	1.4	Ο
34	Pathophysiology of Stroke in Sickle Cell Disease. Microcirculation, 2004, 11, 195-208.	1.8	74
35	The chicken or the egg? Tissue factor and inflammation in sickle cell disease. Blood, 2004, 104, 595-596.	1.4	2
36	Tissue Factor Deficiency Decreases Sickle Cell-Induced Vascular Stasis in a Hematopoietic Stem Cell Transplant Model of Murine Sickle Cell Disease Blood, 2004, 104, 236-236.	1.4	11

#	Article	IF	CITATIONS
37	Desmopressin and Epsilon Amino-Caproic Acid (EACA) in Adenotonsillectomy (T & A): Are We Under-Treating Patients with Mild Type 1 von Willebrand Disease (VWD) and Mild Platelet Function Defects (PFD)? Blood, 2004, 104, 1024-1024.	1.4	0