Ali J Marian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2994913/publications.pdf

Version: 2024-02-01

207 15,017 60 118
papers citations h-index g-index

221 221 221 15123
all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	The EP300/TP53 pathway, a suppressor of the Hippo and canonical WNT pathways, is activated in human hearts with arrhythmogenic cardiomyopathy in the absence of overt heart failure. Cardiovascular Research, 2022, 118, 1466-1478.	1.8	20
2	Oligogenic cardiomyopathy. , 2022, 2, .		1
3	Effects of tamoxifen inducible MerCreMer on gene expression in cardiac myocytes in mice., 2022, 2, .		9
4	The WNT/ \hat{l}^2 -catenin pathway regulates expression of the genes involved in cell cycle progression and mitochondrial oxidative phosphorylation in the postmitotic cardiac myocytes., 2022, 2, .		7
5	Genetic basis of cardiovascular aging is at the core of human longevity. , 2022, 2, 25.		О
6	Sequencing Your Genome: What Does it Mean?. Methodist DeBakey Cardiovascular Journal, 2021, 10, 3.	0.5	21
7	Haploinsufficiency of <i>Tmem43 < i > in cardiac myocytes activates the DNA damage response pathway leading to a late-onset senescence-associated pro-fibrotic cardiomyopathy. Cardiovascular Research, 2021, 117, 2377-2394.</i>	1.8	25
8	Widespread myocardial dysfunction in COVID-19 patients detected by myocardial strain imaging using 2-D speckle-tracking echocardiography. Acta Pharmacologica Sinica, 2021, 42, 1567-1574.	2.8	42
9	A combinatorial oligogenic basis for the phenotypic plasticity between late-onset dilated and arrhythmogenic cardiomyopathy in a single family. , 2021, $1, \dots$		4
10	Highlights of American Heart Association Scientific Sessions 2020: a virtual experience. Cardiovascular Research, 2021, 117, e10-e12.	1.8	0
11	Editorial: Cardiovascular complications of COVID-19. Current Opinion in Cardiology, 2021, 36, 253-255.	0.8	O
12	Clinical Significance of Variants in the TTN Gene in a Large Cohort of Patients With Sporadic Dilated Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2021, 8, 657689.	1.1	8
13	Molecular Genetic Basis of Hypertrophic Cardiomyopathy. Circulation Research, 2021, 128, 1533-1553.	2.0	88
14	Single-Cell RNA Sequencing Uncovers Paracrine Functions of the Epicardial-Derived Cells in Arrhythmogenic Cardiomyopathy. Circulation, 2021, 143, 2169-2187.	1.6	22
15	Pharmacological suppression of the WNT signaling pathway attenuates age-dependent expression of the phenotype in a mouse model of arrhythmogenic cardiomyopathy. , 2021, 1, .		4
16	FAT10 protects against ischemia-induced ventricular arrhythmia by decreasing Nedd4-2/Nav1.5 complex formation. Cell Death and Disease, 2021, 12, 25.	2.7	11
17	Current state of vaccine development and targeted therapies for COVID-19: impact of basic science discoveries. Cardiovascular Pathology, 2021, 50, 107278.	0.7	55
18	Heart Failure as a Consequence of Hypertrophic Cardiomyopathy. , 2020, , 311-321.e6.		0

#	Article	IF	CITATIONS
19	Exercise restores dysregulated gene expression in a mouse model of arrhythmogenic cardiomyopathy. Cardiovascular Research, 2020, 116, 1199-1213.	1.8	44
20	RNA sequencing-based transcriptome profiling of cardiac tissue implicates novel putative disease mechanisms in FLNC-associated arrhythmogenic cardiomyopathy. International Journal of Cardiology, 2020, 302, 124-130.	0.8	23
21	Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, The, 2020, 396, 759-769.	6.3	481
22	Identification of Genes and Pathways Regulated by Lamin A in Heart. Journal of the American Heart Association, 2020, 9, e015690.	1.6	9
23	A tribute to James Thornton Willerson, M.D. November 16, 1939–September 16, 2020. Cardiovascular Research, 2020, 116, 2171-2172.	1.8	0
24	Clinical Interpretation and Management of Genetic Variants. JACC Basic To Translational Science, 2020, 5, 1029-1042.	1.9	23
25	Editorial: Overcoming current limitations of genetic testing in cardiovascular medicine. Current Opinion in Cardiology, 2020, 35, 187-190.	0.8	0
26	COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovascular Research, 2020, 116, 1666-1687.	1.8	1,074
27	Genetic basis and molecular biology of cardiac arrhythmias in cardiomyopathies. Cardiovascular Research, 2020, 116, 1600-1619.	1.8	28
28	Evaluation of Mavacamten in Symptomatic Patients With Nonobstructive Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2020, 75, 2649-2660.	1.2	176
29	BET bromodomain inhibition attenuates cardiac phenotype in myocyte-specific lamin A/C–deficient mice. Journal of Clinical Investigation, 2020, 130, 4740-4758.	3.9	42
30	Efficacy of Nifekalant in Patients With Wolffâ€Parkinsonâ€White Syndrome and Atrial Fibrillation: Electrophysiological and Clinical Findings. Journal of the American Heart Association, 2019, 8, e012511.	1.6	9
31	Role of the Extracellular Matrix inÂtheÂPathogenesis of HypertrophicÂCardiomyopathy. JACC Basic To Translational Science, 2019, 4, 506-508.	1.9	1
32	DNA Damage Response/TP53 Pathway Is Activated and Contributes to the Pathogenesis of Dilated Cardiomyopathy Associated With LMNA (Lamin A/C) Mutations. Circulation Research, 2019, 124, 856-873.	2.0	95
33	Genomic Reorganization of Lamin-Associated Domains in Cardiac Myocytes Is Associated With Differential Gene Expression and DNA Methylation in Human Dilated Cardiomyopathy. Circulation Research, 2019, 124, 1198-1213.	2.0	72
34	Knock Down of Plakophillin 2 Dysregulates Adhesion Pathway through Upregulation of miR200b and Alters the Mechanical Properties in Cardiac Cells. Cells, 2019, 8, 1639.	1.8	18
35	A Calsequestrin Cis-Regulatory Motif Coupled to a Cardiac Troponin T Promoter Improves Cardiac Adeno-Associated Virus Serotype 9 Transduction Specificity. Human Gene Therapy, 2018, 29, 927-937.	1.4	10
36	Suppression of Activated FOXO Transcription Factors in the Heart Prolongs Survival in a Mouse Model of Laminopathies. Circulation Research, 2018, 122, 678-692.	2.0	54

#	Article	IF	Citations
37	Hypertrophy Regression With N-Acetylcysteine in Hypertrophic Cardiomyopathy (HALT-HCM). Circulation Research, 2018, 122, 1109-1118.	2.0	42
38	Scientists on the Spot: A brief word with Ali J. Marian on cardiovascular genetics. Cardiovascular Research, 2018, 114, e91-e92.	1.8	0
39	Introduction to Cardiovascular Aging Compendium. Circulation Research, 2018, 123, 737-739.	2.0	8
40	Genetic Testing in Cardiovascular Medicine. Texas Heart Institute Journal, 2018, 45, 231-232.	0.1	1
41	A Potential Oligogenic Etiology of Hypertrophic Cardiomyopathy. Circulation Research, 2017, 120, 1084-1090.	2.0	47
42	New landscape of cardiovascular genetics and genomics. Current Opinion in Cardiology, 2017, 32, 229-231.	0.8	0
43	Cardiac Myosin Binding Protein-C Autoantibodies Are Potential Early Indicators of Cardiac Dysfunction andÂPatient Outcome in Acute CoronaryÂSyndrome. JACC Basic To Translational Science, 2017, 2, 122-131.	1.9	3
44	Congenital Heart Disease. Circulation Research, 2017, 120, 895-897.	2.0	9
45	Distinct Cellular Basis for Early Cardiac Arrhythmias, the Cardinal Manifestation of Arrhythmogenic Cardiomyopathy, and the Skin Phenotype of Cardiocutaneous Syndromes. Circulation Research, 2017, 121, 1346-1359.	2.0	26
46	Hypertrophic Cardiomyopathy. Circulation Research, 2017, 121, 749-770.	2.0	790
47	To Seek the Holy Grail of Cardiac Progenitor Cells. Circulation Research, 2017, 121, 1208-1209.	2.0	0
48	Identification of established arrhythmogenic right ventricular cardiomyopathy mutation in a patient with the contrasting phenotype of hypertrophic cardiomyopathy. BMC Medical Genetics, 2017, 18, 24.	2.1	8
49	Non-syndromic cardiac progeria in a patient with the rare pathogenic p.Asp300Asn variant in the LMNA gene. BMC Medical Genetics, 2017, 18, 116.	2.1	7
50	Genetics and Genomics of Single-Gene Cardiovascular Diseases. Journal of the American College of Cardiology, 2016, 68, 2831-2849.	1,2	43
51	Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. Circulation Research, 2016, 119, 41-54.	2.0	85
52	Knockdown of Plakophilin 2 Downregulates miR-184 Through CpG Hypermethylation and Suppression of the E2F1 Pathway and Leads to Enhanced Adipogenesis In Vitro. Circulation Research, 2016, 119, 731-750.	2.0	43
53	Challenges in the Diagnosis of Anderson-Fabry Disease. Journal of the American College of Cardiology, 2016, 68, 1051-1053.	1.2	19
54	The Case of "Missing Causal Genes―and the Practice of Medicine. Circulation Research, 2016, 119, 21-24.	2.0	12

#	Article	IF	Citations
55	Genetic Causality in Complex Traits. Journal of the American College of Cardiology, 2016, 67, 417-419.	1.2	6
56	Clinical applications of molecular genetic discoveries. Translational Research, 2016, 168, 6-14.	2.2	5
57	Cardiovascular Genetics: Focus on Genetics of Coronary Artery Disease. Cardiovascular Medicine, 2015, , 727-735.	0.0	1
58	Arrhythmogenic Cardiomyopathy in a Patient With a Rare Lossâ€ofâ€Function <i>KCNQ1</i> Mutation. Journal of the American Heart Association, 2015, 4, e001526.	1.6	23
59	The Bottleneck in Genetic Testing. Circulation Research, 2015, 117, 586-588.	2.0	0
60	Causality in Genetics. Circulation Research, 2014, 114, e18-21.	2.0	30
61	Ali J. Marian. Circulation Research, 2014, 115, 549-551.	2.0	0
62	Recent Developments in Cardiovascular Stem Cells. Circulation Research, 2014, 115, e71-8.	2.0	29
63	Copy Number Variants and the Genetic Enigma of Congenital Heart Disease. Circulation Research, 2014, 115, 821-823.	2.0	6
64	A rare loss-of-function SCN5A variant is associated with lidocaine-induced ventricular fibrillation. Pharmacogenomics Journal, 2014, 14, 372-375.	0.9	9
65	Framework for development of physician competencies in genomic medicine: report of the Competencies Working Group of the Inter-Society Coordinating Committee for Physician Education in Genomics. Genetics in Medicine, 2014, 16, 804-809.	1.1	123
66	Recent Developments in Cardiovascular Genetics and Genomics. Circulation Research, 2014, 115, e11-7.	2.0	6
67	Release kinetics of circulating cardiac myosin binding protein-C following cardiac injury. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H547-H556.	1.5	20
68	The Hippo Pathway Is Activated and Is a Causal Mechanism for Adipogenesis in Arrhythmogenic Cardiomyopathy. Circulation Research, 2014, 114, 454-468.	2.0	227
69	Genomics in Cardiovascular Disease. Journal of the American College of Cardiology, 2013, 61, 2029-2037.	1.2	37
70	The Discovery of the <i>ACE2</i> Gene. Circulation Research, 2013, 112, 1307-1309.	2.0	19
71	FAT10 protects cardiac myocytes against apoptosis. Journal of Molecular and Cellular Cardiology, 2013, 59, 1-10.	0.9	31
72	On the diagnostic utility of junction plakoglobin in arrhythmogenic right ventricular cardiomyopathy. Cardiovascular Pathology, 2013, 22, 309-311.	0.7	5

#	Article	IF	CITATIONS
73	Pathogenesis of hypertrophic cardiomyopathy caused by myozenin 2 mutations is independent of calcineurin activity. Cardiovascular Research, 2013, 97, 44-54.	1.8	39
74	Noncoding RNAs in Cardiovascular Biology and Disease. Circulation Research, 2013, 113, e115-20.	2.0	15
75	Errors in DNA replication and genetic diseases. Current Opinion in Cardiology, 2013, 28, 269-271.	0.8	O
76	Molecular, Cellular, and Functional Characterization of Myocardial Regions in Hypertrophic Cardiomyopathy. Circulation: Cardiovascular Imaging, 2012, 5, 419-422.	1.3	8
77	Elements of â€~missing heritability'. Current Opinion in Cardiology, 2012, 27, 197-201.	0.8	55
78	Human Molecular Genetic and Functional Studies Identify <i>TRIM63</i> , Encoding Muscle RING Finger Protein 1, as a Novel Gene for Human Hypertrophic Cardiomyopathy. Circulation Research, 2012, 111, 907-919.	2.0	117
79	Molecular genetic studies of complex phenotypes. Translational Research, 2012, 159, 64-79.	2.2	121
80	Challenges in Medical Applications of Whole Exome/Genome Sequencing Discoveries. Trends in Cardiovascular Medicine, 2012, 22, 219-223.	2.3	36
81	The Enigma of Genetics Etiology of Atherosclerosis in the Post-GWAS Era. Current Atherosclerosis Reports, 2012, 14, 295-299.	2.0	27
82	Heart Failure as a Consequence of Restrictive Cardiomyopathy., 2011,, 395-407.		0
83	Medical DNA sequencing. Current Opinion in Cardiology, 2011, 26, 175-180.	0.8	17
84	Metabolomic distinction and insights into the pathogenesis of human primary dilated cardiomyopathy. European Journal of Clinical Investigation, 2011, 41, 527-538.	1.7	79
85	Determinants of plasma vitamin D levels in patients with acute coronary syndromes. European Journal of Clinical Investigation, 2011, 41, 1299-1309.	1.7	7
86	Heparin-associated anti-Xa activity and platelet-derived prothrombotic and proinflammatory biomarkers in moderate to high-risk patients with acute coronary syndrome. Journal of Thrombosis and Thrombolysis, 2011, 31, 146-153.	1.0	8
87	Molecular Genetics and Pathogenesis of Arrhythmogenic Right Ventricular Cardiomyopathy: A Disease of Cardiac Stem Cells. Pediatric Cardiology, 2011, 32, 360-365.	0.6	43
88	Genome-Wide Association Studies Complemented with Mechanistic Biological Studies Identify Sortilin 1 as a Novel Regulator of Cholesterol Trafficking. Current Atherosclerosis Reports, 2011, 13, 190-192.	2.0	5
89	Strategic Approaches to Unraveling Genetic Causes of Cardiovascular Diseases. Circulation Research, 2011, 108, 1252-1269.	2.0	95
90	Molecular Genetic and Functional Characterization Implicate Muscle-Restricted Coiled-Coil Gene () Tj ETQq0 0 0 Genetics, 2011, 4, 349-358.	rgBT /Ove 5.1	rlock 10 Tf 50 48

Genetics, 2011, 4, 349-358.

#	Article	IF	Citations
91	Commentariesâ€"Another Addition to the Portfolio of ⟨i⟩Circulation Research⟨ i⟩. Circulation Research, 2011, 108, 157-157.	2.0	2
92	Mitochondrial Genetics and Human Systemic Hypertension. Circulation Research, 2011, 108, 784-786.	2.0	23
93	Nuclear Plakoglobin Is Essential for Differentiation of Cardiac Progenitor Cells to Adipocytes in Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation Research, 2011, 109, 1342-1353.	2.0	145
94	Modeling Human Disease Phenotype in Model Organisms. Circulation Research, 2011, 109, 356-359.	2.0	21
95	Arrhythmogenic right ventricular cardiomyopathy is a disease of cardiac stem cells. Current Opinion in Cardiology, 2010, 25, 222-228.	0.8	30
96	DNA sequence variants and the practice of medicine. Current Opinion in Cardiology, 2010, 25, 182-185.	0.8	2
97	The Personal Genome And The Practice Of Cardiovascular Medicine. Methodist DeBakey Cardiovascular Journal, 2010, 6, 13-20.	0.5	2
98	PCSK9 as a Therapeutic Target in Atherosclerosis. Current Atherosclerosis Reports, 2010, 12, 151-154.	2.0	12
99	Hypertrophic cardiomyopathy: from genetics to treatment. European Journal of Clinical Investigation, 2010, 40, 360-369.	1.7	99
100	Atorvastatin and cardiac hypertrophy and function in hypertrophic cardiomyopathy: a pilot study. European Journal of Clinical Investigation, 2010, 40, 976-983.	1.7	36
101	Circulation Researchand Human Genetic Studies. Circulation Research, 2010, 107, 6-8.	2.0	5
102	Update on hypertrophic cardiomyopathy. Texas Heart Institute Journal, 2010, 37, 322-3.	0.1	3
103	Nature's Genetic Gradients and the Clinical Phenotype. Circulation: Cardiovascular Genetics, 2009, 2, 537-539.	5.1	37
104	Resolution of Established Cardiac Hypertrophy and Fibrosis and Prevention of Systolic Dysfunction in a Transgenic Rabbit Model of Human Cardiomyopathy Through Thiol-Sensitive Mechanisms. Circulation, 2009, 119, 1398-1407.	1.6	106
105	Genetic Fate Mapping Identifies Second Heart Field Progenitor Cells As a Source of Adipocytes in Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation Research, 2009, 104, 1076-1084.	2.0	135
106	The 9p21 susceptibility locus for coronary artery disease and the severity of coronary atherosclerosis. BMC Cardiovascular Disorders, 2009, 9, 3.	0.7	34
107	Cytochrome P-450 polymorphisms and response to clopidogrel. Current Atherosclerosis Reports, 2009, 11, 157-160.	2.0	5
108	Experimental Therapies in Hypertrophic Cardiomyopathy. Journal of Cardiovascular Translational Research, 2009, 2, 483-492.	1.1	35

#	Article	IF	Citations
109	Candidate genetic analysis of plasma high-density lipoprotein-cholesterol and severity of coronary atherosclerosis. BMC Medical Genetics, 2009, 10, 111.	2.1	43
110	Mutations in Smooth Muscle Alpha-Actin (ACTA2) Cause Coronary Artery Disease, Stroke, and Moyamoya Disease, Along with Thoracic Aortic Disease. American Journal of Human Genetics, 2009, 84, 617-627.	2.6	466
111	Contemporary treatment of hypertrophic cardiomyopathy. Texas Heart Institute Journal, 2009, 36, 194-204.	0.1	37
112	Genome-wide association study of susceptibility alleles for coronary artery disease. Current Atherosclerosis Reports, 2008, 10, 183-185.	2.0	1
113	Clinical implications of the "personal―genome. Current Atherosclerosis Reports, 2008, 10, 361-363.	2.0	4
114	The genetic basis of cardiomyopathy. Current Cardiovascular Risk Reports, 2008, 2, 468-475.	0.8	1
115	Identifying Modifier Loci in Existing Genome Scan Data. Annals of Human Genetics, 2008, 72, 670-675.	0.3	13
116	Surprises of the Genome and "Personalized―MedicineâŽâŽEditorials published in the Journal of the American College of Cardiology reflect the views of the authors and do not necessarily represent the views of JACC or the American College of Cardiology., Journal of the American College of Cardiology, 2008, 51, 456-458.	1.2	16
117	Utilities and limitations of genetic testing for hypertropic cardiomyopathy. Expert Opinion on Medical Diagnostics, 2008, 2, 539-546.	1.6	2
118	Differential interactions of thin filament proteins in two cardiac troponin T mouse models of hypertrophic and dilated cardiomyopathies. Cardiovascular Research, 2008, 79, 109-117.	1.8	54
119	Genetic determinants of cardiac hypertrophy. Current Opinion in Cardiology, 2008, 23, 199-205.	0.8	78
120	Genetic Testing For Hypertrophic Cardiomyopathy. Methodist DeBakey Cardiovascular Journal, 2008, 4, 17-20.	0.5	0
121	MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor1 and angiotensin II. Human Molecular Genetics, 2007, 17, 158-158.	1.4	0
122	Enhanced Transmural Fiber Rotation and Connexin 43 Heterogeneity Are Associated With an Increased Upper Limit of Vulnerability in a Transgenic Rabbit Model of Human Hypertrophic Cardiomyopathy. Circulation Research, 2007, 101, 1049-1057.	2.0	50
123	Myozenin 2 Is a Novel Gene for Human Hypertrophic Cardiomyopathy. Circulation Research, 2007, 100, 766-768.	2.0	168
124	MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Human Molecular Genetics, 2007, 16, 2453-2462.	1.4	243
125	Genome-wide mapping of modifier chromosomal loci for human hypertrophic cardiomyopathy. Human Molecular Genetics, 2007, 16, 2463-2471.	1.4	74
126	Cardiac Hypertrophy. , 2007, , 1177-1188.		0

#	Article	IF	Citations
127	Clinical significance of single nucleotide polymorphisms in PCSK9. Current Atherosclerosis Reports, 2007, 9, 175-6.	2.0	1
128	A novel genetic risk factor for myocardial infarction. Current Atherosclerosis Reports, 2007, 9, 176-8.	2.0	0
129	Antifibrotic Effects of Antioxidant N-Acetylcysteine in a Mouse Model of Human Hypertrophic Cardiomyopathy Mutation. Journal of the American College of Cardiology, 2006, 47, 827-834.	1.2	105
130	\hat{l}^2 -adrenergic receptors signaling and heart failure in mice, rabbits and humansa \hat{l} . Journal of Molecular and Cellular Cardiology, 2006, 41, 11-13.	0.9	23
131	Suppression of canonical Wnt/ \hat{A} -catenin signaling by nuclear plakoglobin recapitulates phenotype of arrhythmogenic right ventricular cardiomyopathy. Journal of Clinical Investigation, 2006, 116, 2012-2021.	3.9	519
132	Interleukin-18 and cardiovascular events. Current Atherosclerosis Reports, 2006, 8, 173-4.	2.0	0
133	Matrix metalloproteinase-I gene variants and risk of myocardial infarction. Current Atherosclerosis Reports, 2006, 8, 174-6.	2.0	0
134	Prevention of Cardiac Hypertrophy by Atorvastatin in a Transgenic Rabbit Model of Human Hypertrophic Cardiomyopathy. Circulation Research, 2005, 97, 285-292.	2.0	143
135	Transgenic Mouse Model of Ventricular Preexcitation and Atrioventricular Reentrant Tachycardia Induced by an AMP-Activated Protein Kinase Loss-of-Function Mutation Responsible for Wolff-Parkinson-White Syndrome. Circulation, 2005, 111 , 21 - 29 .	1.6	139
136	Regulatable atrial natriuretic peptide gene therapy for hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13789-13794.	3.3	52
137	On Mice, Rabbits, and Human Heart Failure. Circulation, 2005, 111, 2276-2279.	1.6	28
138	Recent advances in genetics and treatment of hypertrophic cardiomyopathy. Future Cardiology, 2005, 1, 341-353.	0.5	4
139	A Common PCSK9Haplotype, Encompassing the E670G Coding Single Nucleotide Polymorphism, Is a Novel Genetic Marker for Plasma Low-Density Lipoprotein Cholesterol Levels and Severity of Coronary Atherosclerosis. Journal of the American College of Cardiology, 2005, 45, 1611-1619.	1.2	146
140	Atrioventricular fibrous ring disruption promotes ventricular preexcitation in a mouse model of Wolff-Parkinson-white syndrome. Heart Rhythm, 2005, 2, S71.	0.3	0
141	Pharmacogenetic study of statin therapy and cholesterol reduction. Current Atherosclerosis Reports, 2005, 7, 177-8.	2.0	0
142	Cholesteryl ester transfer protein TaqIB polymorphism in the cholesterol and recurrent events study. Current Atherosclerosis Reports, 2005, 7, 178-9.	2.0	0
143	Statins and the Modulation of Cardiac Hypertrophy and Fibrosis: Implications in the Therapy of Heart Failure. , 2004, , 143-162.		1
144	Biomarkers of cardiac disease. Expert Review of Molecular Diagnostics, 2004, 4, 805-820.	1.5	24

#	Article	IF	CITATIONS
145	Aldosterone, Through Novel Signaling Proteins, Is a Fundamental Molecular Bridge Between the Genetic Defect and the Cardiac Phenotype of Hypertrophic Cardiomyopathy. Circulation, 2004, 109, 1284-1291.	1.6	221
146	Induction and reversal of cardiac phenotype of human hypertrophic cardiomyopathy mutation cardiac troponin T-Q92 in switch on–switch off bigenic mice. Journal of the American College of Cardiology, 2004, 44, 2221-2230.	1.2	25
147	Evolution of expression of cardiac phenotypes over a 4-year period in the \$beta;-myosin heavy chain-Q403 transgenic rabbit model of human hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2004, 36, 663-673.	0.9	48
148	Coordinated series of studies to evaluate characteristics and mechanisms of acute coronary syndromes in high-risk patients randomly assigned to enoxaparin or unfractionated heparin: Design and rationale of the SYNERGY Library. American Heart Journal, 2004, 148, 269-276.	1.2	10
149	On predictors of sudden cardiac death in hypertrophic cardiomyopathy**Editorials published in the Journal of the American College of Cardiologyreflect the views of the authors and do not necessarily represent the views of JACCor the American College of Cardiology Journal of the American College of Cardiology. 2003, 41, 994-996.	1.2	27
150	Endothelial lipase is a major genetic determinant for high-density lipoprotein concentration, structure, and metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2748-2753.	3.3	218
151	To Screen or Not Is Not the Question— It Is When and How to Screen. Circulation, 2003, 107, 2171-2174.	1.6	21
152	Tissue Doppler Imaging Predicts the Development of Hypertrophic Cardiomyopathy in Subjects With Subclinical Disease. Circulation, 2003, 108, 395-398.	1.6	249
153	On Koch's Postulates, Causality and Genetics of Cardiomyopathies. Journal of Molecular and Cellular Cardiology, 2002, 34, 971-974.	0.9	7
154	"Into Thin Air―and the Genetics of Complex Traits. Circulation, 2002, 106, 768-769.	1.6	4
155	Effects of SREBF-1a and SCAP polymorphisms on plasma levels of lipids, severity, progression and regression of coronary atherosclerosis and response to therapy with fluvastatin. Journal of Molecular Medicine, 2002, 80, 737-744.	1.7	42
156	A prospective study of paraoxonase gene Q/R192 polymorphism and severity, progression and regression of coronary atherosclerosis, plasma lipid levels, clinical events and response to fluvastatin. Atherosclerosis, 2001, 154, 633-640.	0.4	55
157	Expression profiling of cardiac genes in human hypertrophic cardiomyopathy: insight into the pathogenesis of phenotypes. Journal of the American College of Cardiology, 2001, 38, 1175-1180.	1.2	131
158	The Molecular Genetic Basis for Hypertrophic Cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2001, 33, 655-670.	0.9	394
159	Molecular Pathophysiology of Cardiomyopathies. , 2001, , 1045-1063.		2
160	Human polymorphism of P-selectin glycoprotein ligand 1 attributable to variable numbers of tandem decameric repeats in the mucinlike region. Blood, 2001, 97, 3306-3307.	0.6	35
161	Simvastatin Induces Regression of Cardiac Hypertrophy and Fibrosis and Improves Cardiac Function in a Transgenic Rabbit Model of Human Hypertrophic Cardiomyopathy. Circulation, 2001, 104, 317-324.	1.6	114
162	Simvastatin Induces Regression of Cardiac Hypertrophy and Fibrosis and Improves Cardiac Function in a Transgenic Rabbit Model of Human Hypertrophic Cardiomyopathy. Circulation, 2001, 104, 317-324.	1.6	323

#	Article	IF	CITATIONS
163	Novel Polymorphisms in Promoter Region of ATP Binding Cassette Transporter Gene and Plasma Lipids, Severity, Progression, and Regression of Coronary Atherosclerosis and Response to Therapy. Circulation Research, 2001, 88, 969-973.	2.0	104
164	On Genetics of Dilated Cardiomyopathy and Transgenic Models. Circulation Research, 2001, 89, 3-5.	2.0	4
165	Angiotensin II Blockade Reverses Myocardial Fibrosis in a Transgenic Mouse Model of Human Hypertrophic Cardiomyopathy. Circulation, 2001, 103, 789-791.	1.6	352
166	On Genetics, Inflammation, and Abdominal Aortic Aneurysm. Circulation, 2001, 103, 2222-2224.	1.6	28
167	Tissue Doppler Imaging Consistently Detects Myocardial Abnormalities in Patients With Hypertrophic Cardiomyopathy and Provides a Novel Means for an Early Diagnosis Before and Independently of Hypertrophy. Circulation, 2001, 104, 128-130.	1.6	563
168	A prospective study of genetic markers of susceptibility to infection and inflammation, and the severity, progression, and regression of coronary atherosclerosis and its response to therapy. Journal of Molecular Medicine, 2000, 78, 562-568.	1.7	34
169	Tissue Doppler Imaging Consistently Detects Myocardial Contraction and Relaxation Abnormalities, Irrespective of Cardiac Hypertrophy, in a Transgenic Rabbit Model of Human Hypertrophic Cardiomyopathy. Circulation, 2000, 102, 1346-1350.	1.6	176
170	A Variant of p22 ^{<i>phox</i>} , Involved in Generation of Reactive Oxygen Species in the Vessel Wall, Is Associated With Progression of Coronary Atherosclerosis. Circulation Research, 2000, 86, 391-395.	2.0	134
171	Decreased Left Ventricular Ejection Fraction in Transgenic Mice Expressing Mutant Cardiac Troponin T-Q92, Responsible for Human Hypertrophic Cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2000, 32, 365-374.	0.9	25
172	Interactions between angiotensin-I converting enzyme insertion/deletion polymorphism and response of plasma lipids and coronary atherosclerosis to treatment with fluvastatin. Journal of the American College of Cardiology, 2000, 35, 89-95.	1.2	77
173	Pathogenesis of diverse clinical and pathological phenotypes in hypertrophic cardiomyopathy. Lancet, The, 2000, 355, 58-60.	6.3	217
174	Variants of Trophic Factors and Expression of Cardiac Hypertrophy in Patients with Hypertrophic Cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2000, 32, 2369-2377.	0.9	78
175	Apolipoprotein E genotypes and response of plasma lipids and progression–regression of coronary atherosclerosis to lipid-lowering drug therapy. Journal of the American College of Cardiology, 2000, 36, 1572-1578.	1.2	91
176	Lipoprotein lipase gene mutations, plasma lipid levels, progression/regression of coronary atherosclerosis, response to therapy, and future clinical events. Atherosclerosis, 1999, 144, 435-442.	0.4	35
177	Plasma Homocyst(e)ine Concentration, But Not <i>MTHFR</i> Genotype, Is Associated With Variation in Carotid Plaque Area. Stroke, 1999, 30, 969-973.	1.0	118
178	In Vivo Short-Term Expression of a Hypertrophic Cardiomyopathy Mutation in Adult Rabbit Myocardium: Myof ibrillar Incorporation without Early Disarray. Proceedings of the Association of American Physicians, 1999, 111, 45-56.	2.1	6
179	A transgenic rabbit model for human hypertrophic cardiomyopathy. Journal of Clinical Investigation, 1999, 104, 1683-1692.	3.9	171
180	Molecular Genetic Basis of Hypertrophic Cardiomyopathy: Journal of Cardiovascular Electrophysiology, 1998, 9, 88-99.	0.8	97

#	Article	IF	CITATIONS
181	Dominant-negative effect of a mutant cardiac troponin T on cardiac structure and function in transgenic mice Journal of Clinical Investigation, 1998, 102, 1498-1505.	3.9	108
182	Genetic markers: genes Involved in atherosclerosis. European Journal of Cardiovascular Prevention and Rehabilitation, 1997, 4, 333-339.	1.5	7
183	Genetic markers: genes involved in human hypertension. European Journal of Cardiovascular Prevention and Rehabilitation, 1997, 4, 341-345.	1.5	5
184	A common mutation in methylenetetrahydrofolate reductase gene is not a major risk of coronary artery disease or myocardial infarction. Atherosclerosis, 1997, 128, 107-112.	0.4	83
185	1.P.312 Homocyst(e)ine level but not MTHFR genotype predicts carotid atherosclerosis. Atherosclerosis, 1997, 134, 82-83.	0.4	2
186	Identification of a Genetic Locus for Familial Atrial Fibrillation. New England Journal of Medicine, 1997, 336, 905-911.	13.9	533
187	Association of Angiotensin I-Converting Enzyme Gene Polymorphism With Myocardial Ischemia and Patency of Infarct-Related Artery in Patients With Acute Myocardial Infarction. Journal of the American College of Cardiology, 1997, 29, 1468-1473.	1.2	26
188	Expression of a Mutant (Arg ⁹² Gln) Human Cardiac Troponin T, Known to Cause Hypertrophic Cardiomyopathy, Impairs Adult Cardiac Myocyte Contractility. Circulation Research, 1997, 81, 76-85.	2.0	84
189	Molecular genetics of hypertrophic cardiomyopathy. Journal of Cardiac Failure, 1996, 2, S87-S95.	0.7	4
190	Molecular Genetic Basis of Cardiovascular Disease. Cardiology in Review, 1996, 4, 47-56.	0.6	0
191	Platelet Glycoprotein IIIaPlAPolymorphism and Myocardial Infarction. New England Journal of Medicine, 1996, 335, 1071-1074.	13.9	66
192	Sudden cardiac death in hypertrophic cardiomyopathy. European Heart Journal, 1995, 16, 368-376.	1.0	113
193	Molecular Approaches for Screening of Genetic Diseases. Chest, 1995, 108, 255-265.	0.4	5
194	Apolipoprotein $\hat{l}\mu 4$ is not a genetic risk factor for coronary artery disease or restenosis after percutaneous transluminal coronary angioplasty. American Journal of Cardiology, 1995, 75, 1181-1183.	0.7	15
195	Sudden cardiac death in patients with hypertrophic cardiomyopathy: From bench to bedside with an emphasis on genetic markers. Clinical Cardiology, 1995, 18, 189-198.	0.7	33
196	MOLECULAR GENETICS OF HYPERTROPHIC CARDIOMYOPATHY. Annual Review of Medicine, 1995, 46, 213-222.	5.0	27
197	Localization of a Gene Responsible for Familial Dilated Cardiomyopathy to Chromosome 1q32. Circulation, 1995, 92, 3387-3389.	1.6	123
198	Recent Advances in the Molecular Genetics of Hypertrophic Cardiomyopathy. Circulation, 1995, 92, 1336-1347.	1.6	162

Ali J Marian

#	Article	IF	CITATIONS
199	Angiotensin-I Converting Enzyme Genotypes and Left Ventricular Hypertrophy in Patients With Hypertrophic Cardiomyopathy. Circulation, 1995, 92, 1808-1812.	1.6	176
200	Expression of a Mutation Causing Hypertrophic Cardiomyopathy Disrupts Sarcomere Assembly in Adult Feline Cardiac Myocytes. Circulation Research, 1995, 77, 98-106.	2.0	62
201	A variant of human paraoxonase/arylesterase (HUMPONA) gene is a risk factor for coronary artery disease Journal of Clinical Investigation, 1995, 96, 3005-3008.	3.9	303
202	Molecular Analysis of Genotype/Phenotype Correlations of Hypertrophic Cardiomyopathy. Developments in Cardiovascular Medicine, 1995, , 3-19.	0.1	2
203	Inadvertent administration of rtPA to a patient with type 1 aortic dissection and subsequent cardiac tamponade. American Journal of Emergency Medicine, 1993, 11, 613-615.	0.7	21
204	Angiotensin-converting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death. Lancet, The, 1993, 342, 1085-1086.	6.3	385
205	Expression of a missense mutation in the messenger RNA for beta-myosin heavy chain in myocardial tissue in hypertrophic cardiomyopathy Journal of Clinical Investigation, 1992, 90, 271-277.	3.9	47
206	Detection of a new mutation in the beta-myosin heavy chain gene in an individual with hypertrophic cardiomyopathy Journal of Clinical Investigation, 1992, 90, 2156-2165.	3.9	73
207	Early diagnosis of acute myocardial infarction based on assay for subforms of creatine kinase-MB Circulation, 1990, 82, 759-764.	1.6	159