Dimitrios Balomenos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2994615/publications.pdf

Version: 2024-02-01

28 papers 2,336 citations

394421 19 h-index 27 g-index

29 all docs

29 docs citations

times ranked

29

2738 citing authors

#	Article	IF	CITATIONS
1	Mitochondrial reactive oxygen is critical for IL-12/IL-18-induced IFN- $\hat{1}^3$ production by CD4+ T cells and is regulated by Fas/FasL signaling. Cell Death and Disease, 2022, 13, .	6.3	13
2	Mercury-Tolerant Ensifer medicae Strains Display High Mercuric Reductase Activity and a Protective Effect on Nitrogen Fixation in Medicago truncatula Nodules Under Mercury Stress. Frontiers in Plant Science, 2020, 11, 560768.	3.6	15
3	On How Fas Apoptosis-Independent Pathways Drive T Cell Hyperproliferation and Lymphadenopathy in lpr Mice. Frontiers in Immunology, 2017, 8, 237.	4.8	14
4	Use of Lentiviral Particles As a Cell Membrane-Based mFasL Delivery System for In Vivo Treatment of Inflammatory Arthritis. Frontiers in Immunology, 2017, 8, 460.	4.8	5
5	The Role of IFN- \hat{l}^2 during the Course of Sepsis Progression and Its Therapeutic Potential. Frontiers in Immunology, 2017, 8, 493.	4.8	41
6	p21 mediates macrophage reprogramming through regulation of p50-p50 NF-κB and IFN-β. Journal of Clinical Investigation, 2016, 126, 3089-3103.	8.2	89
7	Distinct p21 requirements for regulating normal and self-reactive T cells through IFN- \hat{I}^3 production. Scientific Reports, 2015, 5, 7691.	3.3	22
8	Cyclinâ€dependent kinase inhibitor p21, via its Câ€ŧerminal domain, is essential for resolution of murine inflammatory arthritis. Arthritis and Rheumatism, 2012, 64, 141-152.	6.7	31
9	Cell Cycle Regulation and Systemic Lupus Erythematosus. , 2011, , 191-198.		2
10	Regulation of macrophage activation and septic shock susceptibility <i>via</i> p21(WAF1/CIP1). European Journal of Immunology, 2009, 39, 810-819.	2.9	58
11	Loss of p53 Induces Tumorigenesis in p21-Deficient Mesenchymal Stem Cells. Neoplasia, 2009, 11, 397-IN9.	5.3	89
12	A salt stress-responsive cytokinin receptor homologue isolated from Medicago sativa nodules. Planta, 2008, 227, 769-779.	3.2	28
13	A cytokinin receptor homologue is induced during root nodule organogenesis and senescence in Lupinus albus L Plant Physiology and Biochemistry, 2008, 46, 219-225.	5. 8	16
14	p21CIP1/WAF1 Controls Proliferation of Activated/Memory T Cells and Affects Homeostasis and Memory T Cell Responses. Journal of Immunology, 2007, 178, 2296-2306.	0.8	53
15	Class IB-Phosphatidylinositol 3-Kinase (PI3K) Deficiency Ameliorates IA-PI3K-Induced Systemic Lupus but Not T Cell Invasion. Journal of Immunology, 2006, 176, 589-593.	0.8	78
16	PI3K \hat{I}^3 inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nature Medicine, 2005, 11, 933-935.	30.7	306
17	Leukocyte attraction through the CCR5 receptor controls progress from insulitis to diabetes in non-obese diabetic mice. European Journal of Immunology, 2004, 34, 548-557.	2.9	90
18	Autocrine Production of IFN- \hat{l}^3 by Macrophages Controls Their Recruitment to Kidney and the Development of Glomerulonephritis in MRL/lpr Mice. Journal of Immunology, 2002, 169, 1058-1067.	0.8	71

#	Article	IF	CITATIONS
19	Functional Inactivation of CXC Chemokine Receptor 4–mediated Responses through SOCS3 Up-regulation. Journal of Experimental Medicine, 2002, 196, 311-321.	8.5	61
20	Still waiting for the end. EMBO Reports, 2002, 3, 104-107.	4.5	3
21	Mutation of E2F2 in Mice Causes Enhanced T Lymphocyte Proliferation, Leading to the Development of Autoimmunity. Immunity, 2001, 15, 959-970.	14.3	149
22	Cell-cycle regulation in immunity, tolerance and autoimmunity. Trends in Immunology, 2000, 21, 551-555.	7.5	59
23	The cell cycle inhibitor p21 controls T-cell proliferation and sex-linked lupus development. Nature Medicine, 2000, 6, 171-176.	30.7	189
24	Increased phosphoinositide 3â€kinase activity induces a lymphoproliferative disorder and contributes to tumor generation in vivo. FASEB Journal, 2000, 14, 895-903.	0.5	160
25	Development of Lupus in BXSB Mice Is Independent of IL-4. Journal of Immunology, 2000, 164, 38-42.	0.8	35
26	An acidic modification of the cytoplasmic domain contributes to the charge heterogeneity of the MHC class I antigens. Immunogenetics, 1998, 47, 381-389.	2.4	2
27	Interferon-gamma is required for lupus-like disease and lymphoaccumulation in MRL-lpr mice Journal of Clinical Investigation, 1998, 101, 364-371.	8.2	325
28	Lupus susceptibility loci in New Zealand mice Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10168-10172.	7.1	332