
Wendy B Macklin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2994602/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Excitable Axonal Domains Adapt to Sensory Deprivation in the Olfactory System. Journal of Neuroscience, 2022, 42, 1491-1509.	3.6	3
2	p70S6 kinase regulates oligodendrocyte differentiation and is active in remyelinating lesions. Brain Communications, 2022, 4, fcac025.	3.3	2
3	Cholesterol biosynthesis defines oligodendrocyte precursor heterogeneity between brain and spinal cord. Cell Reports, 2022, 38, 110423.	6.4	18
4	Defective <scp>fractalkineâ€CX3CR1</scp> signaling aggravates neuroinflammation and affects recovery from cuprizoneâ€induced demyelination. Journal of Neurochemistry, 2022, 162, 430-443.	3.9	6
5	Corneal nonmyelinating Schwann cells illuminated by singleâ€cell transcriptomics and visualized by protein biomarkers. Journal of Neuroscience Research, 2021, 99, 731-749.	2.9	15
6	Intrinsic and extrinsic regulators of oligodendrocyte progenitor proliferation and differentiation. Seminars in Cell and Developmental Biology, 2021, 116, 16-24.	5.0	26
7	PAK1 Positively Regulates Oligodendrocyte Morphology and Myelination. Journal of Neuroscience, 2021, 41, 1864-1877.	3.6	17
8	Murine Esophagus Expresses Glial-Derived Central Nervous System Antigens. International Journal of Molecular Sciences, 2021, 22, 3233.	4.1	8
9	Nutritional regulation of oligodendrocyte differentiation regulates perineuronal net remodeling in the median eminence. Cell Reports, 2021, 36, 109362.	6.4	33
10	mTOR Signaling Regulates Metabolic Function in Oligodendrocyte Precursor Cells and Promotes Efficient Brain Remyelination in the Cuprizone Model. Journal of Neuroscience, 2021, 41, 8321-8337.	3.6	15
11	Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. Microbiome, 2021, 9, 210.	11.1	108
12	The Actin Cytoskeleton in Myelinating Cells. Neurochemical Research, 2020, 45, 684-693.	3.3	30
13	The mechanistic target of rapamycin pathway downregulates bone morphogenetic protein signaling to promote oligodendrocyte differentiation. Glia, 2020, 68, 1274-1290.	4.9	21
14	Mechanistic Target of Rapamycin Regulates the Oligodendrocyte Cytoskeleton during Myelination. Journal of Neuroscience, 2020, 40, 2993-3007.	3.6	31
15	Abstract TP112: Delayed Oligodendrocyte Maturation Corresponds to Myelin and Motor Recovery After Neonatal Stroke. Stroke, 2020, 51, .	2.0	0
16	Concentration-dependent effects of CSF1R inhibitors on oligodendrocyte progenitor cells ex vivo and in vivo. Experimental Neurology, 2019, 318, 32-41.	4.1	53
17	Independent and cooperative roles of the Mek/ERK1/2â€MAPK and PI3K/Akt/mTOR pathways during developmental myelination and in adulthood. Glia, 2019, 67, 1277-1295.	4.9	64
18	A novel myelin protein zero transgenic zebrafish designed for rapid readout of in vivo myelination. Glia, 2019, 67, 650-667.	4.9	18

Wendy B Macklin

#	Article	IF	CITATIONS
19	Delayed inhibition of tonic inhibition enhances functional recovery following experimental ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1005-1014.	4.3	28
20	Endogenous Neuronal Replacement in the Juvenile Brain Following Cerebral Ischemia. Neuroscience, 2018, 380, 1-13.	2.3	9
21	The Protein Tyrosine Phosphatase Shp2 Regulates Oligodendrocyte Differentiation and Early Myelination and Contributes to Timely Remyelination. Journal of Neuroscience, 2018, 38, 787-802.	3.6	9
22	2507 A novel multi-photon microscopy method for neuronavigation in deep brain stimulation surgery. Journal of Clinical and Translational Science, 2018, 2, 2-3.	0.6	0
23	Oligodendrocyte Progenitor Cell Proliferation and Fate after White Matter Stroke in Juvenile and Adult Mice. Developmental Neuroscience, 2018, 40, 601-616.	2.0	17
24	Distinct patterns of glia repair and remyelination in antibodyâ€mediated demyelination models of multiple sclerosis and neuromyelitis optica. Glia, 2018, 66, 2575-2588.	4.9	23
25	Mild myelin disruption elicits early alteration in behavior and proliferation in the subventricular zone. ELife, 2018, 7, .	6.0	33
26	Lipoprotein Lipase Is a Feature of Alternatively-Activated Microglia and May Facilitate Lipid Uptake in the CNS During Demyelination. Frontiers in Molecular Neuroscience, 2018, 11, 57.	2.9	59
27	Integrin-Linked Kinase (ILK) Deletion Disrupts Oligodendrocyte Development by Altering Cell Cycle. Journal of Neuroscience, 2017, 37, 397-412.	3.6	13
28	Myelin-specific multiple sclerosis antibodies cause complement-dependent oligodendrocyte loss and demyelination. Acta Neuropathologica Communications, 2017, 5, 25.	5.2	51
29	Automatic and adaptive heterogeneous refractive index compensation for light-sheet microscopy. Nature Communications, 2017, 8, 612.	12.8	21
30	Loss of Tuberous Sclerosis Complex1 in Adult Oligodendrocyte Progenitor Cells Enhances Axon Remyelination and Increases Myelin Thickness after a Focal Demyelination. Journal of Neuroscience, 2017, 37, 7534-7546.	3.6	20
31	Long-lasting masculinizing effects of postnatal androgens on myelin governed by the brain androgen receptor. PLoS Genetics, 2017, 13, e1007049.	3.5	30
32	Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination. Journal of Neuroinflammation, 2017, 14, 208.	7.2	105
33	A mouse model for testing remyelinating therapies. Experimental Neurology, 2016, 283, 330-340.	4.1	62
34	Variable sensitivity to complement-dependent cytotoxicity in murine models of neuromyelitis optica. Journal of Neuroinflammation, 2016, 13, 301.	7.2	12
35	Juvenile striatal white matter is resistant to ischemiaâ€induced damage. Glia, 2016, 64, 1972-1986.	4.9	24
36	Neuroprotection by central nervous system remyelination: Molecular, cellular, and functional considerations. Journal of Neuroscience Research, 2016, 94, 1411-1420.	2.9	22

WENDY B MACKLIN

#	Article	IF	CITATIONS
37	Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy. Scientific Reports, 2016, 6, 31685.	3.3	13
38	Ecotropic Murine Leukemia Virus Infection of Glial Progenitors Interferes with Oligodendrocyte Differentiation: Implications for Neurovirulence. Journal of Virology, 2016, 90, 3385-3399.	3.4	4
39	SIRT3 Deacetylates Ceramide Synthases. Journal of Biological Chemistry, 2016, 291, 1957-1973.	3.4	63
40	Dynamics and Mechanisms of CNS Myelination. Developmental Cell, 2015, 32, 447-458.	7.0	246
41	Olig1 Function Is Required for Oligodendrocyte Differentiation in the Mouse Brain. Journal of Neuroscience, 2015, 35, 4386-4402.	3.6	88
42	Myelin Proteolipid Protein Complexes with Âv Integrin and AMPA Receptors In Vivo and Regulates AMPA-Dependent Oligodendrocyte Progenitor Cell Migration through the Modulation of Cell-Surface GluR2 Expression. Journal of Neuroscience, 2015, 35, 12018-12032.	3.6	43
43	Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development. Journal of Neuroscience, 2015, 35, 15875-15893.	3.6	54
44	Zebrafish as a model to investigate <scp>CNS</scp> myelination. Glia, 2015, 63, 177-193.	4.9	80
45	Expression of Proteolipid Protein Gene in Spinal Cord Stem Cells and Early Oligodendrocyte Progenitor Cells Is Dispensable for Normal Cell Migration and Myelination. Journal of Neuroscience, 2014, 34, 1333-1343.	3.6	34
46	Mammalian Target of Rapamycin Promotes Oligodendrocyte Differentiation, Initiation and Extent of CNS Myelination. Journal of Neuroscience, 2014, 34, 4453-4465.	3.6	151
47	A New Model of Cuprizone-Mediated Demyelination/Remyelination. ASN Neuro, 2014, 6, 175909141455195.	2.7	121
48	Interaction of mTOR and Erk1/2 signaling to regulate oligodendrocyte differentiation. Glia, 2014, 62, 2096-2109.	4.9	80
49	Human Neural Precursor Cells Promote Neurologic Recovery in a Viral Model of Multiple Sclerosis. Stem Cell Reports, 2014, 2, 825-837.	4.8	63
50	Inhibitors of myelination: ECM changes, CSPGs and PTPs. Experimental Neurology, 2014, 251, 39-46.	4.1	66
51	Conditional Ablation of Raptor or Rictor Has Differential Impact on Oligodendrocyte Differentiation and CNS Myelination. Journal of Neuroscience, 2014, 34, 4466-4480.	3.6	141
52	Two-photon imaging of remyelination of spinal cord axons by engrafted neural precursor cells in a viral model of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2349-55.	7.1	30
53	Signaling mechanisms regulating myelination in the central nervous system. Neuroscience Bulletin, 2013, 29, 199-215.	2.9	29
54	Reversing hypomyelination in BACE1â€null mice with Aktâ€DD overexpression. FASEB Journal, 2013, 27, 1868-1873.	0.5	14

WENDY B MACKLIN

#	Article	lF	CITATIONS
55	The neural androgen receptor: a therapeutic target for myelin repair in chronic demyelination. Brain, 2013, 136, 132-146.	7.6	135
56	mTOR: A Link from the Extracellular Milieu to Transcriptional Regulation of Oligodendrocyte Development. ASN Neuro, 2013, 5, AN20120092.	2.7	62
57	Formation and Maintenance of Myelin. , 2012, , 569-581.		2
58	Progesterone and Nestorone Facilitate Axon Remyelination: A Role for Progesterone Receptors. Endocrinology, 2011, 152, 3820-3831.	2.8	107
59	Visual abnormalities associated with enhanced optic nerve myelination. Brain Research, 2011, 1374, 36-42.	2.2	16
60	The Myelin Brake: When Enough Is Enough. Science Signaling, 2010, 3, pe32.	3.6	21
61	Akt Signals through the Mammalian Target of Rapamycin Pathway to Regulate CNS Myelination. Journal of Neuroscience, 2009, 29, 6860-6870.	3.6	284
62	Distinct modes of migration position oligodendrocyte precursors for localized cell division in the developing spinal cord. Journal of Neuroscience Research, 2009, 87, 3320-3330.	2.9	22
63	Production, characterization, and efficient transfection of highly pure oligodendrocyte precursor cultures from mouse embryonic neural progenitors. Glia, 2008, 56, 1339-1352.	4.9	58
64	Constitutively Active Akt Induces Enhanced Myelination in the CNS. Journal of Neuroscience, 2008, 28, 7174-7183.	3.6	310
65	Morphometric analysis of oligodendrocytes in the adult mouse frontal cortex. Journal of Neuroscience Research, 2007, 85, 2080-2086.	2.9	58
66	Bace1 modulates myelination in the central and peripheral nervous system. Nature Neuroscience, 2006, 9, 1520-1525.	14.8	550
67	Glutamate Stimulates Oligodendrocyte Progenitor Migration Mediated via an Âv Integrin/Myelin Proteolipid Protein Complex. Journal of Neuroscience, 2006, 26, 2458-2466.	3.6	180
68	Inducible site-specific recombination in myelinating cells. Genesis, 2003, 35, 63-72.	1.6	241
69	Myelin Proteolipid Protein Forms a Complex with Integrins and May Participate in Integrin Receptor Signaling in Oligodendrocytes. Journal of Neuroscience, 2002, 22, 7398-7407.	3.6	80
70	Proteolipid Promoter Activity Distinguishes Two Populations of NG2-Positive Cells throughout Neonatal Cortical Development. Journal of Neuroscience, 2002, 22, 876-885.	3.6	328
71	Akt-Mediated Survival of Oligodendrocytes Induced by Neuregulins. Journal of Neuroscience, 2000, 20, 7622-7630.	3.6	169
72	Digitized image analysis reveals diffuse abnormalities in normal-appearing white matter during acute experimental autoimmune encephalomyelitis. , 1998, 54, 364-372.		10

#	Article	IF	CITATIONS
73	Differentiation and Death of Premyelinating Oligodendrocytes in Developing Rodent Brain. Journal of Cell Biology, 1997, 137, 459-468.	5.2	349