Luis Menendez-Arias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2994398/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering protein thermal stability. Journal of Molecular Biology, 1989, 206, 397-406.	4.2	290
2	Molecular basis of human immunodeficiency virus type 1 drug resistance: Overview and recent developments. Antiviral Research, 2013, 98, 93-120.	4.1	179
3	Molecular basis of human immunodeficiency virus drug resistance: An update. Antiviral Research, 2010, 85, 210-231.	4.1	150
4	Curing of foot-and-mouth disease virus from persistently infected cells by ribavirin involves enhanced mutagenesis. Virology, 2003, 311, 339-349.	2.4	149
5	Primary structure of the major allergen of yellow mustard (Sinapis alba L.) seed, Sin a I. FEBS Journal, 1988, 177, 159-166.	0.2	136
6	Nucleoside/nucleotide analog inhibitors of hepatitis B virus polymerase: mechanism of action and resistance. Current Opinion in Virology, 2014, 8, 1-9.	5.4	131
7	Mechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase. Virus Research, 2008, 134, 124-146.	2.2	122
8	Targeting HIV: antiretroviral therapy and development of drug resistance. Trends in Pharmacological Sciences, 2002, 23, 381-388.	8.7	120
9	Cell Cycle Control and HIV-1 Susceptibility Are Linked by CDK6-Dependent CDK2 Phosphorylation of SAMHD1 in Myeloid and Lymphoid Cells. Journal of Immunology, 2014, 193, 1988-1997.	0.8	118
10	RNA virus fitness. , 1997, 7, 87-96.		113
11	Mutation Rates and Intrinsic Fidelity of Retroviral Reverse Transcriptases. Viruses, 2009, 1, 1137-1165.	3.3	102
12	Molecular basis of fidelity of DNA synthesis and nucleotide specificity of retroviral reverse transcriptases. Progress in Molecular Biology and Translational Science, 2002, 71, 91-147.	1.9	95
13	Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection. Antiviral Research, 2014, 102, 70-86.	4.1	88
14	HIV protease cleaves poly(A)-binding protein. Biochemical Journal, 2006, 396, 219-226.	3.7	85
15	Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chemical Society Reviews, 2021, 50, 4514-4540.	38.1	84
16	Viral reverse transcriptases. Virus Research, 2017, 234, 153-176.	2.2	77
17	Coupling Ribose Selection to Fidelity of DNA Synthesis. Journal of Biological Chemistry, 2000, 275, 19759-19767.	3.4	73
18	The Eukaryotic Translation Initiation Factor 4GI Is Cleaved by Different Retroviral Proteases. Journal of Virology, 2003, 77, 12392-12400.	3.4	73

#	Article	IF	CITATIONS
19	Viral quasispecies and the problem of vaccine-escape and drug-resistant mutants. , 1997, 48, 99-128.		72
20	Update and latest advances in antiretroviral therapy. Trends in Pharmacological Sciences, 2022, 43, 16-29.	8.7	71
21	Isolation and Characterization of a Major Allergen from Oriental Mustard Seeds, <i>Bra j</i> I. International Archives of Allergy and Immunology, 1991, 96, 263-270.	2.1	65
22	Characterization of the Reverse Transcriptase of a Human Immunodeficiency Virus Type 1 Group O Isolate. Virology, 1997, 236, 364-373.	2.4	60
23	Mispair extension fidelity of human immunodeficiency virus type 1 reverse transcriptases with amino acid substitutions affecting Tyr115. Nucleic Acids Research, 1997, 25, 1383-1389.	14.5	51
24	HIV-1 protease inhibitors: effects on HIV-2 replication and resistance. Trends in Pharmacological Sciences, 2008, 29, 42-49.	8.7	51
25	Epitope mapping of the major allergen from yellow mustard seeds, Sin a I. Molecular Immunology, 1990, 27, 143-150.	2.2	50
26	Increased Thermostability and Fidelity of DNA Synthesis of Wild-Type and Mutant HIV-1 Group O Reverse Transcriptases. Journal of Molecular Biology, 2009, 392, 872-884.	4.2	49
27	Viral Quasispecies and Fitness Variations. , 1999, , 141-161.		46
28	Molecular and spectroscopic characterisation of a low molecular weight seed storage protein from yellow mustard (Sinapis alba L.). International Journal of Biochemistry & Cell Biology, 1987, 19, 899-907.	0.5	45
29	Ribonuclease H/DNA Polymerase HIV-1 Reverse Transcriptase Dual Inhibitor: Mechanistic Studies on the Allosteric Mode of Action of Isatin-Based Compound RMNC6. PLoS ONE, 2016, 11, e0147225.	2.5	45
30	Multidrug-resistant HIV-1 Reverse Transcriptase: Involvement of Ribonucleotide-dependent Phosphorolysis in Cross-resistance to Nucleoside Analogue Inhibitors. Journal of Molecular Biology, 2002, 323, 181-197.	4.2	44
31	Suppression of Multidrug-resistant HIV-1 Reverse Transcriptase Primer Unblocking Activity by α-Phosphate-modified Thymidine Analogues. Journal of Molecular Biology, 2005, 349, 451-463.	4.2	44
32	Molecular Determinants of Multi-nucleoside Analogue Resistance in HIV-1 Reverse Transcriptases Containing a Dipeptide Insertion in the Fingers Subdomain. Journal of Biological Chemistry, 2004, 279, 24569-24577.	3.4	42
33	Update on Recent Developments in Small Molecular HIV-1 RNase H Inhibitors (2013-2016): Opportunities and Challenges. Current Medicinal Chemistry, 2018, 25, 1682-1702.	2.4	41
34	Insertions in the Reverse Transcriptase Increase both Drug Resistance and Viral Fitness in a Human Immunodeficiency Virus Type 1 Isolate Harboring the Multi-Nucleoside Reverse Transcriptase Inhibitor Resistance 69 Insertion Complex Mutation. Journal of Virology, 2002, 76, 10546-10552.	3.4	40
35	Ribonuclease H, an unexploited target for antiviral intervention against HIV and hepatitis B virus. Antiviral Research, 2019, 171, 104613.	4.1	39
36	HIV-1 reverse transcriptase connection subdomain mutations involved in resistance to approved non-nucleoside inhibitors. Antiviral Research, 2011, 92, 139-149.	4.1	38

#	Article	IF	CITATIONS
37	Decoding molnupiravir-induced mutagenesis in SARS-CoV-2. Journal of Biological Chemistry, 2021, 297, 100867.	3.4	38
38	Moloney Murine Leukemia Virus Protease: Bacterial Expression and Characterization of the Purified Enzyme. Virology, 1993, 196, 557-563.	2.4	37
39	Fitness Variations and their Impact on the Evolution of Antiretroviral Drug Resistance. Current Drug Targets Infectious Disorders, 2003, 3, 355-371.	2.1	37
40	Relative replication fitness of multi-nucleoside analogue-resistant HIV-1 strains bearing a dipeptide insertion in the fingers subdomain of the reverse transcriptase and mutations at codons 67 and 215. Virology, 2004, 326, 103-112.	2.4	35
41	Dynamics of dominance of a dipeptide insertion in reverse transcriptase of HIV-1 from patients subjected to prolonged therapy. Virus Research, 2000, 66, 13-26.	2.2	34
42	Primary structure of the major allergen of yellow mustard (<i>Sinapis alba</i> L.) seed, <i>Sin a</i> I. FEBS Journal, 1988, 177, 159-166.	0.2	34
43	Virus population dynamics, fitness variations and the control of viral disease: an update. , 2001, 57, 77-115.		34
44	Studies on the Effects of Truncating α-Helix Eâ€~ of p66 Human Immunodeficiency Virus Type 1 Reverse Transcriptase on Templateâ~'Primer Binding and Fidelity of DNA Synthesis. Biochemistry, 1998, 37, 16636-16644.	2.5	33
45	Insertions and Deletions in HIV-1 Reverse Transcriptase: Consequences for Drug Resistance and Viral Fitness. Current Pharmaceutical Design, 2006, 12, 1811-1825.	1.9	33
46	Functional Characterization of Chimeric Reverse Transcriptases with Polypeptide Subunits of Highly Divergent HIV-1 Group M and O Strains. Journal of Biological Chemistry, 2001, 276, 27470-27479.	3.4	32
47	Mechanistic Insights into the Role of Val75 of HIV-1 Reverse Transcriptase in Misinsertion and Mispair Extension Fidelity of DNA Synthesis. Journal of Molecular Biology, 2008, 375, 1234-1248.	4.2	32
48	5-Hydroxypyrido[2,3-b]pyrazin-6(5H)-one derivatives as novel dual inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H and integrase. European Journal of Medicinal Chemistry, 2018, 155, 714-724.	5.5	31
49	Reverse Transcriptase: From Transcriptomics to Genome Editing. Trends in Biotechnology, 2021, 39, 194-210.	9.3	31
50	Mutational Patterns Associated with the 69 Insertion Complex in Multi-drug-resistant HIV-1 Reverse Transcriptase that Confer Increased Excision Activity and High-level Resistance to Zidovudine. Journal of Molecular Biology, 2007, 365, 298-309.	4.2	29
51	Mechanisms Involved in the Selection of HIV-1 Reverse Transcriptase Thumb Subdomain Polymorphisms Associated with Nucleoside Analogue Therapy Failure. Antimicrobial Agents and Chemotherapy, 2010, 54, 4799-4811.	3.2	29
52	A Rapid, Highly Sensitive and Open-Access SARS-CoV-2 Detection Assay for Laboratory and Home Testing. Frontiers in Molecular Biosciences, 2022, 9, 801309.	3.5	29
53	A Mg ²⁺ â€induced conformational switch rendering a competent DNA polymerase catalytic complex. Proteins: Structure, Function and Bioinformatics, 2008, 71, 565-574.	2.6	28
54	Mutational analysis of Phe160 within the "palm―subdomain of human immunodeficiency virus type 1 reverse transcriptase 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 290, 615-625.	4.2	27

#	Article	IF	CITATIONS
55	Viral Quasispecies: Dynamics, Interactions, and Pathogenesis**Dedicated to Manfred Eigen on the occasion of his 80th birthday, for the insights that his pioneer studies have represented for virology , 2008, , 87-118.		27
56	Thermostable HIV-1 group O reverse transcriptase variants with the same fidelity as murine leukaemia virus reverse transcriptase. Biochemical Journal, 2011, 436, 599-607.	3.7	27
57	HIV-Resistance to Viral Entry Inhibitors. Current Pharmaceutical Design, 2004, 10, 1845-1860.	1.9	27
58	β-Turns as structural motifs for the proteolytic processing of seed proteins. FEBS Letters, 1990, 263, 209-212.	2.8	26
59	Discovery and optimization of benzenesulfonamides-based hepatitis B virus capsid modulators via contemporary medicinal chemistry strategies. European Journal of Medicinal Chemistry, 2020, 206, 112714.	5.5	26
60	Lethal Mutagenesis of RNA Viruses and Approved Drugs with Antiviral Mutagenic Activity. Viruses, 2022, 14, 841.	3.3	25
61	Transcriptional inaccuracy threshold attenuates differences in RNA-dependent DNA synthesis fidelity between retroviral reverse transcriptases. Scientific Reports, 2018, 8, 627.	3.3	24
62	Relative Fitness and Replication Capacity of a Multinucleoside Analogue-Resistant Clinical Human Immunodeficiency Virus Type 1 Isolate with a Deletion of Codon 69 in the Reverse Transcriptase Coding Region. Journal of Virology, 2007, 81, 4713-4721.	3.4	23
63	Antiviral Agents: Structural Basis of Action and Rational Design. Sub-Cellular Biochemistry, 2013, 68, 599-630.	2.4	23
64	Altered error specificity of RNase H-deficient HIV-1 reverse transcriptases during DNA-dependent DNA synthesis. Nucleic Acids Research, 2013, 41, 4601-4612.	14.5	23
65	Effects of HIV-1 reverse transcriptase connection subdomain mutations on polypurine tract removal and initiation of (+)-strand DNA synthesis. Nucleic Acids Research, 2015, 43, 2259-2270.	14.5	22
66	Mutational Analysis of the Substrate Binding Pocket of Murine Leukemia Virus Protease and Comparison with Human Immunodeficiency Virus Proteases. Journal of Biological Chemistry, 1995, 270, 29162-29168.	3.4	21
67	Mutational patterns and correlated amino acid substitutions in the HIVâ€1 protease after virological failure to nelfinavir―and lopinavir/ritonavirâ€based treatments. Journal of Medical Virology, 2007, 79, 1617-1628.	5.0	20
68	Evidence and controversies on the role of XMRV in prostate cancer and chronic fatigue syndrome. Reviews in Medical Virology, 2011, 21, 3-17.	8.3	19
69	A376S in the Connection Subdomain of HIV-1 Reverse Transcriptase Confers Increased Risk of Virological Failure to Nevirapine Therapy. Journal of Infectious Diseases, 2011, 204, 741-752.	4.0	19
70	Comparative study on the secondary structure of lysozymes from different sources. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1984, 77, 83-88.	0.2	18
71	Mechanistic Basis of Zidovudine Hypersusceptibility and Lamivudine Resistance Conferred by the Deletion of Codon 69 in the HIV-1 Reverse Transcriptase Coding Region. Journal of Molecular Biology, 2008, 382, 327-341.	4.2	18
72	Editorial overview: Antivirals and resistance: Advances and challenges ahead. Current Opinion in Virology, 2014, 8, iv-vii.	5.4	18

#	Article	IF	CITATIONS
73	SAMHD1 is active in cycling cells permissive to HIV-1 infection. Antiviral Research, 2017, 142, 123-135.	4.1	18
74	Cytotoxic T-Lymphocyte Responses to HIV-1 Reverse Transcriptase (Review). Viral Immunology, 1998, 11, 167-181.	1.3	17
75	1-Hydroxypyrido[2,3-d]pyrimidin-2(1H)-ones as novel selective HIV integrase inhibitors obtained via privileged substructure-based compound libraries. Bioorganic and Medicinal Chemistry, 2017, 25, 5779-5789.	3.0	16
76	Increased G→A Transition Frequencies Displayed by Primer Grip Mutants of Human Immunodeficiency Virus Type 1 Reverse Transcriptase. Journal of Virology, 2004, 78, 1012-1019.	3.4	14
77	Nucleotide specificity of HIV-1 reverse transcriptases with amino acid substitutions affecting Ala-114. Biochemical Journal, 2005, 387, 221-229.	3.7	14
78	HIV-1 Protease Dimer Interface Mutations that Compensate for Viral Reverse Transcriptase Instability in Infectious Virions. Journal of Molecular Biology, 2007, 372, 369-381.	4.2	14
79	Thymidine Analogue Resistance Suppression by V75I of HIV-1 Reverse Transcriptase. Journal of Biological Chemistry, 2009, 284, 32792-32802.	3.4	14
80	Thymidine Analogue Excision and Discrimination Modulated by Mutational Complexes Including Single Amino Acid Deletions of Asp-67 or Thr-69 in HIV-1 Reverse Transcriptase. Journal of Biological Chemistry, 2011, 286, 20615-20624.	3.4	14
81	Design, synthesis, and biologic evaluation of novel galloyl derivatives as <scp>HIV</scp> â€1 <scp>RN</scp> ase H inhibitors. Chemical Biology and Drug Design, 2019, 93, 582-589.	3.2	14
82	Retroviral reverse transcription. Virus Research, 2008, 134, 1-3.	2.2	13
83	Fidelity of classwide-resistant HIV-2 reverse transcriptase and differential contribution of K65R to the accuracy of HIV-1 and HIV-2 reverse transcriptases. Scientific Reports, 2017, 7, 44834.	3.3	13
84	HIV-1 reverse transcriptase thumb subdomain polymorphisms associated with virological failure to nucleoside drug combinations. Journal of Antimicrobial Chemotherapy, 2009, 64, 251-258.	3.0	12
85	Effect of the Human Immunodeficiency Virus Type 1 Reverse Transcriptase Polymorphism Leu-214 on Replication Capacity and Drug Susceptibility. Journal of Virology, 2009, 83, 7434-7439.	3.4	12
86	Design, synthesis and biological evaluation of 3-hydroxyquinazoline-2,4(1H,3H)-diones as dual inhibitors of HIV-1 reverse transcriptase-associated RNase H and integrase. Bioorganic and Medicinal Chemistry, 2019, 27, 3836-3845.	3.0	12
87	Purification and characterization of napin-like proteins from radish. Journal of Experimental Botany, 1994, 45, 1169-1176.	4.8	11
88	Major Groove Binding Track Residues of the Connection Subdomain of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Enhance cDNA Synthesis at High Temperatures. Biochemistry, 2013, 52, 9318-9328.	2.5	11
89	Temperature effects on the fidelity of a thermostable <scp>HIV</scp> â€l reverse transcriptase. FEBS Journal, 2014, 281, 342-351.	4.7	11
90	Novel indolylarylsulfone derivatives as covalent HIV-1 reverse transcriptase inhibitors specifically targeting the drug-resistant mutant Y181C. Bioorganic and Medicinal Chemistry, 2021, 30, 115927.	3.0	11

#	Article	IF	CITATIONS
91	Tryptophan scanning mutagenesis of aromatic residues within the polymerase domain of HIV-1 reverse transcriptase: critical role of Phe-130 for p51 function and second-site revertant restoring viral replication capacity. Virology, 2004, 324, 400-411.	2.4	10
92	DR_SEQAN: a PC/Windows-based software to evaluate drug resistance using human immunodeficiency virus type 1 genotypes. BMC Infectious Diseases, 2006, 6, 44.	2.9	10
93	Intrinsic DNA synthesis fidelity of xenotropic murine leukemia virusâ€related virus reverse transcriptase. FEBS Journal, 2012, 279, 1433-1444.	4.7	10
94	Template-primer binding affinity and RNase H cleavage specificity contribute to the strand transfer efficiency of HIV-1 reverse transcriptase. Journal of Biological Chemistry, 2018, 293, 13351-13363.	3.4	10
95	Structure of the pigeon lysozyme and its relationship with other type c lysozymes. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1987, 88, 791-796.	0.2	9
96	Identification of low-molecular weight inhibitors of HIV-1 reverse transcriptase using a cell-based high-throughput screening system. Antiviral Research, 2011, 91, 94-98.	4.1	9
97	Amino acid residues in HIV-2 reverse transcriptase that restrict the development of nucleoside analogue resistance through the excision pathway. Journal of Biological Chemistry, 2018, 293, 2247-2259.	3.4	9
98	Discovery, optimization, and target identification of novel coumarin derivatives as HIV-1 reverse transcriptase-associated ribonuclease H inhibitors. European Journal of Medicinal Chemistry, 2021, 225, 113769.	5.5	9
99	Novel RNase H Inhibitors Blocking RNA-directed Strand Displacement DNA Synthesis by HIV-1 Reverse Transcriptase. Journal of Molecular Biology, 2022, 434, 167507.	4.2	9
100	Amino acid substitutions away from the RNase H catalytic site increase the thermal stability of Moloney murine leukemia virus reverse transcriptase through RNase H inactivation. Biochemical and Biophysical Research Communications, 2014, 454, 269-274.	2.1	8
101	Viral polymerases. Virus Research, 2017, 234, 1-3.	2.2	8
102	Peptides Mimicking the β7/β8 Loop of HIV-1 Reverse Transcriptase p51 as "Hotspot-Targeted―Dimerization Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 811-817.	2.8	8
103	A BASIC microcomputer program to calculate the secondary structure of proteins from their circular dichroism spectrum. Bioinformatics, 1988, 4, 479-482.	4.1	7
104	Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy. Retrovirology, 2012, 9, 68.	2.0	7
105	Sequence analysis of HIV-1vif gene in Spanish isolates. Virus Genes, 1995, 9, 283-288.	1.6	6
106	Investigation of the dNTP-binding site of HIV-1 reverse transcriptase using photoreactive analogs of dNTP. Biochemistry (Moscow), 2001, 66, 999-1007.	1.5	6
107	Characterization of two distinct early post-entry blocks to HIV-1 in common marmoset lymphocytes. Scientific Reports, 2016, 6, 37489.	3.3	6
108	HIV Reverse Transcriptase Fidelity, Clade Diversity, and Acquisition of Drug Resistance. , 2013, , 225-252.		6

#	Article	IF	CITATIONS
109	2019 meeting of the global virus network. Antiviral Research, 2019, 172, 104645.	4.1	5
110	Search, Identification, and Design of Effective Antiviral Drugs Against Pandemic Human Coronaviruses. Advances in Experimental Medicine and Biology, 2021, 1322, 219-260.	1.6	5
111	Molecular Mechanisms of Resistance to Nucleoside Analogue Inhibitors of Human Immunodeficiency Virus Reverse Transcriptase. Drug Design Reviews Online, 2005, 2, 101-113.	0.7	5
112	Relationship between hydropathic variability and functional properties of α-lactalbumins and type c lysozymes. Journal of Theoretical Biology, 1987, 126, 91-100.	1.7	4
113	A BASIC microcomputer program for prediction of B and T cell epitopes in proteins. Bioinformatics, 1990, 6, 101-105.	4.1	4
114	HIV-1 Adapts To Replicate in Cells Expressing Common Marmoset APOBEC3G and BST2. Journal of Virology, 2016, 90, 725-740.	3.4	4
115	Design, synthesis, and biological evaluation of novel double-winged galloyl derivatives as HIV-1 RNase H inhibitors. European Journal of Medicinal Chemistry, 2022, 240, 114563.	5.5	4
116	A structural frame for understanding the role of thymidine analogue resistance mutations in resistance to zidovudine and other nucleoside analogues. Antiviral Therapy, 2011, 16, 943-946.	1.0	3
117	Molecular basis of the association of H208Y and thymidine analogue resistance mutations M41L, L210W and T215Y in the HIV-1 reverse transcriptase of treated patients. Antiviral Research, 2014, 106, 42-52.	4.1	3
118	Defective Strand-Displacement DNA Synthesis Due to Accumulation of Thymidine Analogue Resistance Mutations in HIV-2 Reverse Transcriptase. ACS Infectious Diseases, 2020, 6, 1140-1153.	3.8	3
119	Amino acid sequence around the cysteine residues of pigeon egg-white lysozyme: Comparative study with other type c lysozymes. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1985, 82, 639-642.	0.2	2
120	DNA-Dependent DNA Polymerases as Drug Targets in Herpesviruses and Poxviruses. , 2019, , 95-134.		2
121	Nucleocapsid Protein Precursors NCp9 and NCp15 Suppress ATP-Mediated Rescue of AZT-Terminated Primers by HIV-1 Reverse Transcriptase. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	2
122	Analysis and Molecular Determinants of HIV RNase H Cleavage Specificity at the PPT/U3 Junction. Viruses, 2021, 13, 131.	3.3	2
123	Moloney murine leukemia virus retropepsin. , 2004, , 176-178.		2
124	Quasispecies and Drug Resistance. , 2017, , 123-147.		2
125	An Update on Antiretroviral Therapy. Advances in Experimental Medicine and Biology, 2021, 1322, 31-61.	1.6	1
126	A structural comparison of type c lysozymes based on their hydropathic profiles. Journal of Theoretical Biology, 1987, 127, 221-228.	1.7	0

#	Article	IF	CITATIONS
127	Sequence analysis of the polymerase domain of HIV-1 reverse transcriptase in naive and zidovudine-treated individuals reveals a higher polymorphism in alpha-helices as compared with beta-strands. Virus Genes, 1999, 18, 203-210.	1.6	0
128	Tryptophan scanning mutagenesis of aromatic residues within the polymerase domain of HIV-1 reverse transcriptase: critical role of Phe-130 for p51 function and second-site revertant restoring viral replication capacity. Virology, 2004, 324, 400-400.	2.4	0
129	Ritonavir-boosted darunavir: a powerful option for treatment-experienced HIV-1-infected patients. Future Virology, 2008, 3, 423-434.	1.8	0
130	Equine Infectious Anemia Virus Retropepsin. , 2013, , 207-210.		0
131	Mouse Mammary Tumor Virus Retropepsin. , 2013, , 223-226.		0
132	Moloney Murine Leukemia Virus Retropepsin. , 2013, , 226-230.		0
133	Quasispecies and Drug Resistance. , 2014, , 1-22.		0
134	126â€fQuestions and challenges in HIV drug resistance. Journal of Acquired Immune Deficiency Syndromes (1999), 2014, 65, 52.	2.1	0
135	Mouse mammary tumor virus retropepsin. , 2004, , 174-175.		0
136	Equine infectious anemia virus retropepsin. , 2004, , 160-163.		0