Marianne Elias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2993700/publications.pdf

Version: 2024-02-01

304743 243625 2,296 56 22 44 h-index citations g-index papers 71 71 71 2577 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Anthropogenic pressures coincide with Neotropical biodiversity hotspots in a flagship butterfly group. Diversity and Distributions, 2022, 28, 2912-2930.	4.1	18
2	Uncovering the effects of Mýllerian mimicry on the evolution of conspicuousness in colour patterns. Oikos, 2022, 2022, .	2.7	0
3	Hard to catch: experimental evidence supports evasive mimicry. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20203052.	2.6	22
4	Developmental, cellular, and biochemical basis of transparency in clearwing butterflies. Journal of Experimental Biology, 2021, 224, .	1.7	11
5	Assessing the Role of Developmental and Environmental Factors in Chemical Defence Variation in Heliconiini Butterflies. Journal of Chemical Ecology, 2021, 47, 577-587.	1.8	2
6	Wing transparency in butterflies and moths: structural diversity, optical properties, and ecological relevance. Ecological Monographs, 2021, 91, e01475.	5.4	10
7	Comparative transcriptome analysis at the onset of speciation in a mimetic butterflyâ€"The Ithomiini <i>Melinaea marsaeus</i> . Journal of Evolutionary Biology, 2021, 34, 1704-1721.	1.7	2
8	Punctuational ecological changes rather than global factors drive species diversification and the evolution of wing phenotypes in <i>Morpho</i> butterflies. Journal of Evolutionary Biology, 2021, 34, 1592-1607.	1.7	9
9	Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nature Communications, 2021, 12, 5717.	12.8	33
10	Partial wing transparency works better when disrupting wing edges: Evidence from a field experiment. Journal of Evolutionary Biology, 2021, 34, 1840-1846.	1.7	1
11	Mimicry can drive convergence in structural and light transmission features of transparent wings in Lepidoptera. ELife, 2021, 10, .	6.0	9
12	Elevational filtering and the evolution of planthoppers (Hemiptera, Fulgoromorpha) in Papua New Guinea. Biotropica, 2020, 52, 313-322.	1.6	2
13	Transparency improves concealment in cryptically coloured moths. Journal of Evolutionary Biology, 2020, 33, 247-252.	1.7	18
14	Urbanization and agricultural intensification destabilize animal communities differently than diversity loss. Nature Communications, 2020, 11, 2686.	12.8	39
15	Contrasting genomic and phenotypic outcomes of hybridization between pairs of mimetic butterfly taxa across a suture zone. Molecular Ecology, 2020, 29, 1328-1343.	3.9	9
16	Positive and negative interactions jointly determine the structure of MÃ $^1\!/\!4$ llerian mimetic communities. Oikos, 2020, 129, 983-997.	2.7	10
17	Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies. Ecology and Evolution, 2020, 10, 2677-2694.	1.9	21
18	3-Acetoxy-fatty acid isoprenyl esters from androconia of the ithomiine butterfly <i>Ithomia salapia</i> . Beilstein Journal of Organic Chemistry, 2020, 16, 2776-2787.	2.2	8

#	Article	lF	CITATIONS
19	Chemistry of the Androconial Secretion of the Ithomiine Butterfly Oleria onega. Journal of Chemical Ecology, 2019, 45, 768-778.	1.8	11
20	Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation. Global Ecology and Biogeography, 2019, 28, 1118-1132.	5.8	35
21	Why has transparency evolved in aposematic butterflies? Insights from the largest radiation of aposematic butterflies, the Ithomiini. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182769.	2.6	30
22	Does divergent selection predict the evolution of mate preference and reproductive isolation in the tropical butterfly genus Melinaea (Nymphalidae: Ithomiini)?. Journal of Animal Ecology, 2019, 88, 940-952.	2.8	18
23	Transparency reduces predator detection in mimetic clearwing butterflies. Functional Ecology, 2019, 33, 1110-1119.	3.6	29
24	Quantitative characterization of iridescent colours in biological studies: a novel method using optical theory. Interface Focus, 2019, 9, 20180049.	3.0	22
25	Contrasting patterns of Andean diversification among three diverse clades of Neotropical clearwing butterflies. Ecology and Evolution, 2018, 8, 3965-3982.	1.9	29
26	Mutualistic mimicry enhances species diversification through spatial segregation and extension of the ecological niche space. Evolution; International Journal of Organic Evolution, 2017, 71, 826-844.	2.3	17
27	North Andean origin and diversification of the largest ithomiine butterfly genus. Scientific Reports, 2017, 7, 45966.	3.3	48
28	Maintaining mimicry diversity: optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170744.	2.6	60
29	Ancestrality and evolution of trait syndromes in finches (Fringillidae). Ecology and Evolution, 2017, 7, 9935-9953.	1.9	3
30	Unravelling the role of host plant expansion in the diversification of a Neotropical butterfly genus. BMC Evolutionary Biology, 2016, 16, 128.	3.2	9
31	Diversification of clearwing butterflies with the rise of the Andes. Journal of Biogeography, 2016, 43, 44-58.	3.0	54
32	Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina. Molecular Ecology, 2016, 25, 5765-5784.	3.9	52
33	Variation in cyanogenic compounds concentration within a Heliconius butterfly community: does mimicry explain everything?. BMC Evolutionary Biology, 2016, 16, 272.	3.2	20
34	The development and characterization of polymorphic microsatellite loci for the genus Melinaea (Nymphalidae, Ithomiini). Conservation Genetics Resources, 2014, 6, 891-893.	0.8	2
35	Mutualistic Mimicry and Filtering by Altitude Shape the Structure of Andean Butterfly Communities. American Naturalist, 2014, 183, 26-39.	2.1	52
36	Evolutionary History and Ecological Processes Shape a Local Multilevel Antagonistic Network. Current Biology, 2013, 23, 1355-1359.	3.9	56

3

#	Article	IF	Citations
37	Ecologically relevant cryptic species in the highly polymorphic Amazonian butterfly Mechanitis mazaeus s.l. (Lepidoptera: Nymphalidae; Ithomiini). Biological Journal of the Linnean Society, 2012, 106, 540-560.	1.6	17
38	Secondary Sympatry Caused by Range Expansion Informs on the Dynamics of Microendemism in a Biodiversity Hotspot. PLoS ONE, 2012, 7, e48047.	2.5	32
39	Two Possible Caterpillar Mimicry Complexes in Neotropical Danaine Butterflies (Lepidoptera:) Tj ETQq1 1 0.7843	14 rgBT /C 2.9	Overlock 10 T
40	Heterogeneity in predator micro-habitat use and the maintenance of MÃ $^1\!\!/4$ llerian mimetic diversity. Journal of Theoretical Biology, 2011, 281, 39-46.	1.7	26
41	Molecular phylogenetics of the neotropical butterfly subtribe Oleriina (Nymphalidae: Danainae:) Tj ETQq1 1 0.784	43 <u>1</u> 4 rgBT	⁻ /Qyerlock 1
42	The evolutionary ecology of clonally propagated domesticated plants. New Phytologist, 2010, 186, 318-332.	7.3	354
43	Mitochondrial DNA barcoding detects some species that are real, and some that are not. Molecular Ecology Resources, 2010, 10, 264-273.	4.8	119
44	Phylogenetic community ecology needs to take positive interactions into account. Communicative and Integrative Biology, 2009, 2, 113-116.	1.4	11
45	Mutualistic Interactions Drive Ecological Niche Convergence in a Diverse Butterfly Community. PLoS Biology, 2008, 6, e300.	5.6	130
46	Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2881-2889.	2.6	233
47	The unappreciated ecology of landrace populations: Conservation consequences of soil seed banks in Cassava. Biological Conservation, 2007, 136, 541-551.	4.1	37
48	Polydomy in ants: what we know, what we think we know, and what remains to be done. Biological Journal of the Linnean Society, 2007, 90, 319-348.	1.6	168
49	Propagule Quantity and Quality in Traditional Makushi Farming of Cassava (Manihot esculenta): A Case Study for Understanding Domestication and Evolution of Vegetatively Propagated Crops. Genetic Resources and Crop Evolution, 2007, 54, 99-115.	1.6	22
50	Seasonal polydomy and unicoloniality in a polygynous population of the red wood ant Formica truncorum. Behavioral Ecology and Sociobiology, 2005, 57, 339-349.	1.4	43
51	Genetic Diversity of Traditional South American Landraces of Cassava (Manihot Esculenta Crantz): An Analysis Using Microsatellites. Economic Botany, 2004, 58, 242-256.	1.7	80
52	Germination Ecology of Cassava (Manihot Esculenta Crantz, Euphorbiaceae) in Traditional Agroecosystems: Seed and Seedling Biology of a Vegetatively Propagated Domesticated Plant1. Economic Botany, 2002, 56, 366-379.	1.7	51
53	Title is missing!. Euphytica, 2001, 120, 143-157.	1.2	83
54	The unmanaged reproductive ecology of domesticated plants in traditional agroecosystems: An example involving cassavaand a call for data. Acta Oecologica, 2000, 21, 223-230.	1.1	38

#	Article	IF	CITATIONS
55	Distribution of iridescent colours in humming bird communities results from the interplay between selection for camouflage and communication. , 0, 1, .		2
56	Shape of Evasive Prey Can Be an Important Cue That Triggers Learning in Avian Predators. Frontiers in Ecology and Evolution, 0, 10, .	2.2	6