Yan Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2993053/publications.pdf

Version: 2024-02-01

68 5,262 36 66
papers citations h-index g-index

68 68 6793
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Real-time monitoring of Ralstonia solanacearum infection progress in tomato and Arabidopsis using bioluminescence imaging technology. Plant Methods, 2022, 18, 7.	4.3	13
2	Genome-Wide Identification and Functions against Tomato Spotted Wilt Tospovirus of PR-10 in Solanum lycopersicum. International Journal of Molecular Sciences, 2022, 23, 1502.	4.1	9
3	An evolutionarily conserved C4HC3-type E3 ligase regulates plant broad-spectrum resistance against pathogens. Plant Cell, 2022, 34, 1822-1843.	6.6	16
4	A new NLR gene for resistance to Tomato spotted wilt virus in tomato (Solanum lycopersicum). Theoretical and Applied Genetics, 2022, 135, 1493-1509.	3.6	12
5	The receptor-like cytosolic kinase RIPK activates NADP-malic enzyme 2 to generate NADPH for fueling ROS production. Molecular Plant, 2022, 15, 887-903.	8.3	20
6	Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice. Molecular Plant, 2022, 15, 723-739.	8.3	31
7	Overexpression of SIBBX17 affects plant growth and enhances heat tolerance in tomato. International Journal of Biological Macromolecules, 2022, 206, 799-811.	7.5	19
8	Split-Luciferase Complementation for Analysis of Virus–Host Protein Interactions. Methods in Molecular Biology, 2022, 2400, 55-62.	0.9	1
9	Identification of TALE Transcription Factor Family and Expression Patterns Related to Fruit Chloroplast Development in Tomato (Solanum lycopersicum L.). International Journal of Molecular Sciences, 2022, 23, 4507.	4.1	4
10	Development of Rice Stripe Tenuivirus Minireplicon Reverse Genetics Systems Suitable for Analyses of Viral Replication and Intercellular Movement. Frontiers in Microbiology, 2021, 12, 655256.	3.5	8
11	Development of RNA Polymerase III-Driven Reverse Genetics System for the Rescue of a Plant Rhabdovirus. Virologica Sinica, 2021, 36, 1252-1255.	3.0	O
12	Maintaining Symbiotic Homeostasis: How Do Plants Engage With Beneficial Microorganisms While at the Same Time Restricting Pathogens?. Molecular Plant-Microbe Interactions, 2021, 34, 462-469.	2.6	52
13	The receptor-like cytoplasmic kinase RIPK regulates broad-spectrum ROS signaling in multiple layers of plant immune system. Molecular Plant, 2021, 14, 1652-1667.	8.3	63
14	Natural Resources Resistance to Tomato Spotted Wilt Virus (TSWV) in Tomato (Solanum) Tj ETQq0 0 0 rgBT /Ov	verlock 10 4.1	Tf 50 222 Td
15	SICCD1A Enhances the Aroma Quality of Tomato Fruits by Promoting the Synthesis of Carotenoid-Derived Volatiles. Foods, 2021, 10, 2678.	4.3	13
16	Improved Functional Expression of Cytochrome P450s in Saccharomyces cerevisiae Through Screening a cDNA Library From Arabidopsis thaliana. Frontiers in Bioengineering and Biotechnology, 2021, 9, 764851.	4.1	4
17	Endophytic fungus <i>Falciphora oryzae</i> promotes lateral root growth by producing indole derivatives after sensing plant signals. Plant, Cell and Environment, 2020, 43, 358-373.	5.7	30
18	Optimal temporal–spatial fluorescence techniques for phenotyping nitrogen status in oilseed rape. Journal of Experimental Botany, 2020, 71, 6429-6443.	4.8	7

#	Article	IF	Citations
19	Design and Application of a Rotatory Device for Detecting Transient Ca 2+ Signals in Response to Mechanical Stimulation Using an Aequorinâ€Based Ca 2+ Imaging System. Current Protocols in Plant Biology, 2020, 5, e20116.	2.8	0
20	The GAMYB-like gene SIMYB33 mediates flowering and pollen development in tomato. Horticulture Research, 2020, 7, 133.	6.3	38
21	Comparative Transcriptomic Analysis of the Development of Sepal Morphology in Tomato (Solanum) Tj ETQq1	1 0.784314 4.1	rgBT /Overlo
22	Comparing the Flavor Characteristics of 71 Tomato (Solanum lycopersicum) Accessions in Central Shaanxi. Frontiers in Plant Science, 2020, 11, 586834.	3.6	14
23	Antepenultimate residue at the C-terminus of NADPH oxidase RBOHD is critical for its function in the production of reactive oxygen species in Arabidopsis. Journal of Zhejiang University: Science B, 2019, 20, 713-727.	2.8	10
24	Plant begomoviruses subvert ubiquitination to suppress plant defenses against insect vectors. PLoS Pathogens, 2019, 15, e1007607.	4.7	63
25	Overexpression of a Mitogen-Activated Protein Kinase SIMAPK3 Positively Regulates Tomato Tolerance to Cadmium and Drought Stress. Molecules, 2019, 24, 556.	3.8	57
26	Tomato Natural Resistance Genes in Controlling the Root-Knot Nematode. Genes, 2019, 10, 925.	2.4	60
27	RNA Interference: A Natural Immune System of Plants to Counteract Biotic Stressors. Cells, 2019, 8, 38.	4.1	90
28	Lipopolysaccharides Trigger Two Successive Bursts of Reactive Oxygen Species at Distinct Cellular Locations. Plant Physiology, 2018, 176, 2543-2556.	4.8	60
29	Decreased number of locules and pericarp cell layers underlie smaller and ovoid fruit in tomato <i>smaller fruit</i> (<i>sf</i>) mutant. Botany, 2018, 96, 883-895.	1.0	6
30	Tomato LysM Receptor-Like Kinase SILYK12 Is Involved in Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant Science, 2018, 9, 1004.	3.6	42
31	Intracellular trafficking of begomoviruses in the midgut cells of their insect vector. PLoS Pathogens, 2018, 14, e1006866.	4.7	47
32	Genome-Wide Analysis of DCL, AGO, and RDR Gene Families in Pepper (Capsicum Annuum L.). International Journal of Molecular Sciences, 2018, 19, 1038.	4.1	54
33	Arabidopsis E3 ubiquitin ligase PLANT Uâ€BOX13 (<scp>PUB</scp> 13) regulates chitin receptor LYSIN MOTIF RECEPTOR KINASE5 (<scp>LYK</scp> 5) protein abundance. New Phytologist, 2017, 214, 1646-1656.	7.3	114
34	Chitin receptor <scp>CERK</scp> 1 links salt stress and chitinâ€triggered innate immunity in Arabidopsis. Plant Journal, 2017, 89, 984-995.	5.7	73
35	Transcriptomic Analysis Implies That GA Regulates Sex Expression via Ethylene-Dependent and Ethylene-Independent Pathways in Cucumber (Cucumis sativus L.). Frontiers in Plant Science, 2017, 8, 10.	3.6	41
36	Transcriptome Profiling of Tomato Uncovers an Involvement of Cytochrome P450s and Peroxidases in Stigma Color Formation. Frontiers in Plant Science, 2017, 8, 897.	3 . 6	16

#	Article	IF	Citations
37	CaRDR1, an RNA-Dependent RNA Polymerase Plays a Positive Role in Pepper Resistance against TMV. Frontiers in Plant Science, 2017, 8, 1068.	3.6	36
38	SIMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLoS ONE, 2017, 12, e0172466.	2.5	64
39	The <i>ArabidopsisCROWDED NUCLEI</i> genes regulate seed germination by modulating degradation of ABI5 protein. Journal of Integrative Plant Biology, 2016, 58, 669-678.	8.5	41
40	Identification of Homogentisate Dioxygenase as a Target for Vitamin E Biofortification in Oilseeds. Plant Physiology, 2016, 172, 1506-1518.	4.8	43
41	Rice Ferredoxin-Dependent Glutamate Synthase Regulates Nitrogen–Carbon Metabolomes and Is Genetically Differentiated between japonica and indica Subspecies. Molecular Plant, 2016, 9, 1520-1534.	8.3	73
42	Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2016, 2, 16112.	9.3	529
43	Involvement of a Putative Bipartite Transit Peptide in Targeting Rice Pheophorbide a Oxygenase into Chloroplasts for Chlorophyll Degradation during Leaf Senescence. Journal of Genetics and Genomics, 2016, 43, 145-154.	3.9	16
44	Genome-wide association-mapping for fruit quality traits in tomato. Euphytica, 2016, 207, 439-451.	1.2	47
45	Genome-Wide Association Mapping for Tomato Volatiles Positively Contributing to Tomato Flavor. Frontiers in Plant Science, 2015, 6, 1042.	3.6	75
46	Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (<i>Solanum lycopersicum</i>) under salt stress. Botany, 2014, 92, 775-781.	1.0	59
47	Identification of a Plant Receptor for Extracellular ATP. Science, 2014, 343, 290-294.	12.6	435
48	Extracellular ATP, a danger signal, is recognized by DORN1Âin <i>Arabidopsis</i> . Biochemical Journal, 2014, 463, 429-437.	3.7	73
49	Cytokinin Antagonizes Abscisic Acid-Mediated Inhibition of Cotyledon Greening by Promoting the Degradation of ABSCISIC ACID INSENSITIVE5 Protein in Arabidopsis Â. Plant Physiology, 2014, 164, 1515-1526.	4.8	107
50	Overexpression of tomato SpMPK3 gene in Arabidopsis enhances the osmotic tolerance. Biochemical and Biophysical Research Communications, 2014, 443, 357-362.	2.1	33
51	Lipochitooligosaccharide recognition: an ancient story. New Phytologist, 2014, 204, 289-296.	7.3	122
52	Molecular Characterization and Expression Analysis of Chloroplast Protein Import Components in Tomato (Solanum lycopersicum). PLoS ONE, 2014, 9, e95088.	2.5	13
53	The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. ELife, $2014, 3, \ldots$	6.0	465
54	miR172 Regulates Soybean Nodulation. Molecular Plant-Microbe Interactions, 2013, 26, 1371-1377.	2.6	121

#	Article	IF	Citations
55	Nonlegumes Respond to Rhizobial Nod Factors by Suppressing the Innate Immune Response. Science, 2013, 341, 1384-1387.	12.6	216
56	Arabidopsis Transcription Factor Genes NF-YA1, 5, 6, and 9 Play Redundant Roles in Male Gametogenesis, Embryogenesis, and Seed Development. Molecular Plant, 2013, 6, 188-201.	8.3	134
57	Role of LysM receptors in chitin-triggered plant innate immunity. Plant Signaling and Behavior, 2013, 8, e22598.	2.4	59
58	Deletion of the Initial 45 Residues of ARR18 Induces Cytokinin Response in Arabidopsis. Journal of Genetics and Genomics, 2012, 39, 37-46.	3.9	23
59	Application of rhodamine B thiolactone to fluorescence imaging of Hg2+ in Arabidopsis thaliana. Sensors and Actuators B: Chemical, 2011, 153, 261-265.	7.8	24
60	A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in <i>Medicago truncatula </i>). Plant Journal, 2010, 62, 100-112.	5.7	112
61	<i>Arabidopsis</i> Histidine Kinase CKI1 Acts Upstream of HISTIDINE PHOSPHOTRANSFER PROTEINS to Regulate Female Gametophyte Development and Vegetative Growth Â. Plant Cell, 2010, 22, 1232-1248.	6.6	127
62	The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Research, 2009, 19, 1377-1387.	12.0	168
63	Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Research, 2009, 19, 1178-1190.	12.0	98
64	Abscisic Acid Coordinates Nod Factor and Cytokinin Signaling during the Regulation of Nodulation in <i>Medicago truncatula</i> . Plant Cell, 2008, 20, 2681-2695.	6.6	189
65	<i>LEAFY COTYLEDON1</i> ls a Key Regulator of Fatty Acid Biosynthesis in Arabidopsis Â. Plant Physiology, 2008, 148, 1042-1054.	4.8	364
66	Abscisic acid rescues the root meristem defects of the Medicago truncatula latd mutant. Developmental Biology, 2007, 304, 297-307.	2.0	113
67	The LATD Gene of Medicago truncatula Is Required for Both Nodule and Root Development. Molecular Plant-Microbe Interactions, 2005, 18, 521-532.	2.6	99
68	Response of root branching to abscisic acid is correlated with nodule formation both in legumes and nonlegumes. American Journal of Botany, 2005, 92, 1675-1683.	1.7	70