
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2993053/publications.pdf Version: 2024-02-01

VANLIANC

#	Article	IF	CITATIONS
1	Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2016, 2, 16112.	9.3	529
2	The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. ELife, 2014, 3, .	6.0	465
3	Identification of a Plant Receptor for Extracellular ATP. Science, 2014, 343, 290-294.	12.6	435
4	<i>LEAFY COTYLEDON1</i> Is a Key Regulator of Fatty Acid Biosynthesis in Arabidopsis Â. Plant Physiology, 2008, 148, 1042-1054.	4.8	364
5	Nonlegumes Respond to Rhizobial Nod Factors by Suppressing the Innate Immune Response. Science, 2013, 341, 1384-1387.	12.6	216
6	Abscisic Acid Coordinates Nod Factor and Cytokinin Signaling during the Regulation of Nodulation in <i>Medicago truncatula</i> . Plant Cell, 2008, 20, 2681-2695.	6.6	189
7	The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Research, 2009, 19, 1377-1387.	12.0	168
8	Arabidopsis Transcription Factor Genes NF-YA1, 5, 6, and 9 Play Redundant Roles in Male Gametogenesis, Embryogenesis, and Seed Development. Molecular Plant, 2013, 6, 188-201.	8.3	134
9	<i>Arabidopsis</i> Histidine Kinase CKI1 Acts Upstream of HISTIDINE PHOSPHOTRANSFER PROTEINS to Regulate Female Gametophyte Development and Vegetative Growth Â. Plant Cell, 2010, 22, 1232-1248.	6.6	127
10	Lipochitooligosaccharide recognition: an ancient story. New Phytologist, 2014, 204, 289-296.	7.3	122
11	miR172 Regulates Soybean Nodulation. Molecular Plant-Microbe Interactions, 2013, 26, 1371-1377.	2.6	121
12	Arabidopsis E3 ubiquitin ligase PLANT Uâ€BOX13 (<scp>PUB</scp> 13) regulates chitin receptor LYSIN MOTIF RECEPTOR KINASE5 (<scp>LYK</scp> 5) protein abundance. New Phytologist, 2017, 214, 1646-1656.	7.3	114
13	Abscisic acid rescues the root meristem defects of the Medicago truncatula latd mutant. Developmental Biology, 2007, 304, 297-307.	2.0	113
14	A putative transporter is essential for integrating nutrient and hormone signaling with lateral root growth and nodule development in <i>Medicago truncatula</i> . Plant Journal, 2010, 62, 100-112.	5.7	112
15	Cytokinin Antagonizes Abscisic Acid-Mediated Inhibition of Cotyledon Greening by Promoting the Degradation of ABSCISIC ACID INSENSITIVE5 Protein in Arabidopsis Â. Plant Physiology, 2014, 164, 1515-1526.	4.8	107
16	The LATD Gene of Medicago truncatula Is Required for Both Nodule and Root Development. Molecular Plant-Microbe Interactions, 2005, 18, 521-532.	2.6	99
17	Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Research, 2009, 19, 1178-1190.	12.0	98
18	RNA Interference: A Natural Immune System of Plants to Counteract Biotic Stressors. Cells, 2019, 8, 38.	4.1	90

#	Article	IF	CITATIONS
19	Genome-Wide Association Mapping for Tomato Volatiles Positively Contributing to Tomato Flavor. Frontiers in Plant Science, 2015, 6, 1042.	3.6	75
20	Extracellular ATP, a danger signal, is recognized by DORN1Âin <i>Arabidopsis</i> . Biochemical Journal, 2014, 463, 429-437.	3.7	73
21	Rice Ferredoxin-Dependent Glutamate Synthase Regulates Nitrogen–Carbon Metabolomes and Is Genetically Differentiated between japonica and indica Subspecies. Molecular Plant, 2016, 9, 1520-1534.	8.3	73
22	Chitin receptor <scp>CERK</scp> 1 links salt stress and chitinâ€ŧriggered innate immunity in Arabidopsis. Plant Journal, 2017, 89, 984-995.	5.7	73
23	Response of root branching to abscisic acid is correlated with nodule formation both in legumes and nonlegumes. American Journal of Botany, 2005, 92, 1675-1683.	1.7	70
24	SIMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLoS ONE, 2017, 12, e0172466.	2.5	64
25	Plant begomoviruses subvert ubiquitination to suppress plant defenses against insect vectors. PLoS Pathogens, 2019, 15, e1007607.	4.7	63
26	The receptor-like cytoplasmic kinase RIPK regulates broad-spectrum ROS signaling in multiple layers of plant immune system. Molecular Plant, 2021, 14, 1652-1667.	8.3	63
27	Lipopolysaccharides Trigger Two Successive Bursts of Reactive Oxygen Species at Distinct Cellular Locations. Plant Physiology, 2018, 176, 2543-2556.	4.8	60
28	Tomato Natural Resistance Genes in Controlling the Root-Knot Nematode. Genes, 2019, 10, 925.	2.4	60
29	Role of LysM receptors in chitin-triggered plant innate immunity. Plant Signaling and Behavior, 2013, 8, e22598.	2.4	59
30	Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (<i>Solanum lycopersicum</i>) under salt stress. Botany, 2014, 92, 775-781.	1.0	59
31	Overexpression of a Mitogen-Activated Protein Kinase SIMAPK3 Positively Regulates Tomato Tolerance to Cadmium and Drought Stress. Molecules, 2019, 24, 556.	3.8	57
32	Genome-Wide Analysis of DCL, AGO, and RDR Gene Families in Pepper (Capsicum Annuum L.). International Journal of Molecular Sciences, 2018, 19, 1038.	4.1	54
33	Maintaining Symbiotic Homeostasis: How Do Plants Engage With Beneficial Microorganisms While at the Same Time Restricting Pathogens?. Molecular Plant-Microbe Interactions, 2021, 34, 462-469.	2.6	52
34	Genome-wide association-mapping for fruit quality traits in tomato. Euphytica, 2016, 207, 439-451.	1.2	47
35	Intracellular trafficking of begomoviruses in the midgut cells of their insect vector. PLoS Pathogens, 2018, 14, e1006866.	4.7	47
36	ldentification of Homogentisate Dioxygenase as a Target for Vitamin E Biofortification in Oilseeds. Plant Physiology, 2016, 172, 1506-1518.	4.8	43

#	Article	IF	CITATIONS
37	Tomato LysM Receptor-Like Kinase SILYK12 Is Involved in Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant Science, 2018, 9, 1004.	3.6	42
38	The <i>ArabidopsisCROWDED NUCLEI</i> genes regulate seed germination by modulating degradation of ABI5 protein. Journal of Integrative Plant Biology, 2016, 58, 669-678.	8.5	41
39	Transcriptomic Analysis Implies That GA Regulates Sex Expression via Ethylene-Dependent and Ethylene-Independent Pathways in Cucumber (Cucumis sativus L.). Frontiers in Plant Science, 2017, 8, 10.	3.6	41
40	The GAMYB-like gene SIMYB33 mediates flowering and pollen development in tomato. Horticulture Research, 2020, 7, 133.	6.3	38
41	CaRDR1, an RNA-Dependent RNA Polymerase Plays a Positive Role in Pepper Resistance against TMV. Frontiers in Plant Science, 2017, 8, 1068.	3.6	36
42	Overexpression of tomato SpMPK3 gene in Arabidopsis enhances the osmotic tolerance. Biochemical and Biophysical Research Communications, 2014, 443, 357-362.	2.1	33
43	Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice. Molecular Plant, 2022, 15, 723-739.	8.3	31
44	Endophytic fungus <i>Falciphora oryzae</i> promotes lateral root growth by producing indole derivatives after sensing plant signals. Plant, Cell and Environment, 2020, 43, 358-373.	5.7	30
45	Application of rhodamine B thiolactone to fluorescence imaging of Hg2+ in Arabidopsis thaliana. Sensors and Actuators B: Chemical, 2011, 153, 261-265.	7.8	24
46	Deletion of the Initial 45 Residues of ARR18 Induces Cytokinin Response in Arabidopsis. Journal of Genetics and Genomics, 2012, 39, 37-46.	3.9	23
47	The receptor-like cytosolic kinase RIPK activates NADP-malic enzyme 2 to generate NADPH for fueling ROS production. Molecular Plant, 2022, 15, 887-903.	8.3	20
48	Overexpression of SIBBX17 affects plant growth and enhances heat tolerance in tomato. International Journal of Biological Macromolecules, 2022, 206, 799-811.	7.5	19
49	Involvement of a Putative Bipartite Transit Peptide in Targeting Rice Pheophorbide a Oxygenase into Chloroplasts for Chlorophyll Degradation during Leaf Senescence. Journal of Genetics and Genomics, 2016, 43, 145-154.	3.9	16
50	Transcriptome Profiling of Tomato Uncovers an Involvement of Cytochrome P450s and Peroxidases in Stigma Color Formation. Frontiers in Plant Science, 2017, 8, 897.	3.6	16
51	Natural Resources Resistance to Tomato Spotted Wilt Virus (TSWV) in Tomato (Solanum) Tj ETQq1 1 0.78431	4 rgBT/Ov	erlock 10 Tf 5
52	An evolutionarily conserved C4HC3-type E3 ligase regulates plant broad-spectrum resistance against pathogens. Plant Cell, 2022, 34, 1822-1843.	6.6	16
53	Comparing the Flavor Characteristics of 71 Tomato (Solanum lycopersicum) Accessions in Central Shaanxi. Frontiers in Plant Science, 2020, 11, 586834.	3.6	14
54	Molecular Characterization and Expression Analysis of Chloroplast Protein Import Components in Tomato (Solanum lycopersicum). PLoS ONE, 2014, 9, e95088.	2.5	13

#	Article	IF	CITATIONS
55	SICCD1A Enhances the Aroma Quality of Tomato Fruits by Promoting the Synthesis of Carotenoid-Derived Volatiles. Foods, 2021, 10, 2678.	4.3	13
56	Real-time monitoring of Ralstonia solanacearum infection progress in tomato and Arabidopsis using bioluminescence imaging technology. Plant Methods, 2022, 18, 7.	4.3	13
57	A new NLR gene for resistance to Tomato spotted wilt virus in tomato (Solanum lycopersicum). Theoretical and Applied Genetics, 2022, 135, 1493-1509.	3.6	12

58 Comparative Transcriptomic Analysis of the Development of Sepal Morphology in Tomato (Solanum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

59	Antepenultimate residue at the C-terminus of NADPH oxidase RBOHD is critical for its function in the production of reactive oxygen species in Arabidopsis. Journal of Zhejiang University: Science B, 2019, 20, 713-727.	2.8	10
60	Genome-Wide Identification and Functions against Tomato Spotted Wilt Tospovirus of PR-10 in Solanum lycopersicum. International Journal of Molecular Sciences, 2022, 23, 1502.	4.1	9
61	Development of Rice Stripe Tenuivirus Minireplicon Reverse Genetics Systems Suitable for Analyses of Viral Replication and Intercellular Movement. Frontiers in Microbiology, 2021, 12, 655256.	3.5	8
62	Optimal temporal–spatial fluorescence techniques for phenotyping nitrogen status in oilseed rape. Journal of Experimental Botany, 2020, 71, 6429-6443.	4.8	7
63	Decreased number of locules and pericarp cell layers underlie smaller and ovoid fruit in tomato <i>smaller fruit</i> (<i>sf</i>) mutant. Botany, 2018, 96, 883-895.	1.0	6
64	Improved Functional Expression of Cytochrome P450s in Saccharomyces cerevisiae Through Screening a cDNA Library From Arabidopsis thaliana. Frontiers in Bioengineering and Biotechnology, 2021, 9, 764851.	4.1	4
65	Identification of TALE Transcription Factor Family and Expression Patterns Related to Fruit Chloroplast Development in Tomato (Solanum lycopersicum L.). International Journal of Molecular Sciences, 2022, 23, 4507.	4.1	4
66	Split-Luciferase Complementation for Analysis of Virus–Host Protein Interactions. Methods in Molecular Biology, 2022, 2400, 55-62.	0.9	1
67	Design and Application of a Rotatory Device for Detecting Transient Ca 2+ Signals in Response to Mechanical Stimulation Using an Aequorinâ€Based Ca 2+ Imaging System. Current Protocols in Plant Biology, 2020, 5, e20116.	2.8	0
68	Development of RNA Polymerase III-Driven Reverse Genetics System for the Rescue of a Plant Rhabdovirus. Virologica Sinica, 2021, 36, 1252-1255.	3.0	0