Michael Spedding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2993034/publications.pdf

Version: 2024-02-01

189 papers 21,122 citations

65 h-index 9579 142 g-index

194 all docs

194 docs citations

times ranked

194

27264 citing authors

#	Article	IF	CITATIONS
1	The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Research, 2018, 46, D1091-D1106.	6.5	1,584
2	A Unified Nomenclature System for the Nuclear Receptor Superfamily. Cell, 1999, 97, 161-163.	13.5	1,083
3	The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Research, 2016, 44, D1054-D1068.	6.5	1,075
4	Functional Selectivity and Classical Concepts of Quantitative Pharmacology. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 1-13.	1.3	997
5	Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nature Reviews Drug Discovery, 2012, 11, 141-168.	21.5	960
6	The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Research, 2014, 42, D1098-D1106.	6.5	826
7	Anti-inflammatory actions of steroids: molecular mechanisms. Trends in Pharmacological Sciences, 1993, 14, 436-441.	4.0	687
8	Overview of Nomenclature of Nuclear Receptors. Pharmacological Reviews, 2006, 58, 685-704.	7.1	540
9	International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on Terms and Symbols in Quantitative Pharmacology. Pharmacological Reviews, 2003, 55, 597-606.	7.1	536
10	A nomenclature for ligand-gated ion channels. Neuropharmacology, 2009, 56, 2-5.	2.0	531
11	The Concise Guide to PHARMACOLOGY 2013/14: G Proteinâ€Coupled Receptors. British Journal of Pharmacology, 2013, 170, 1459-1581.	2.7	528
12	International Union of Pharmacology. XLVI. G Protein-Coupled Receptor List. Pharmacological Reviews, 2005, 57, 279-288.	7.1	452
13	The Concise Guide to <scp>PHARMACOLOGY</scp> 2013/14: Enzymes. British Journal of Pharmacology, 2013, 170, 1797-1867.	2.7	416
14	Altering the course of schizophrenia: progress and perspectives. Nature Reviews Drug Discovery, 2016, 15, 485-515.	21.5	410
15	Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nature Reviews Drug Discovery, 2018, 17, 660-688.	21.5	370
16	The hippocampal–prefrontal pathway: The weak link in psychiatric disorders?. European Neuropsychopharmacology, 2013, 23, 1165-1181.	0.3	354
17	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Introduction and Other Protein Targets. British Journal of Pharmacology, 2019, 176, S1-S20.	2.7	295

#	Article	IF	CITATIONS
19	Acute Stress-induced Changes in Hippocampal/Prefrontal Circuits in Rats: Effects of Antidepressants. Cerebral Cortex, 2004, 14, 224-229.	1.6	270
20	THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview. British Journal of Pharmacology, 2017, 174, S1-S16.	2.7	269
21	A functional correlate for the dihydropyridine binding site in rat brain. Nature, 1985, 314, 94-96.	13.7	252
22	International Union of Basic and Clinical Pharmacology. LXXXVIII. G Protein-Coupled Receptor List: Recommendations for New Pairings with Cognate Ligands. Pharmacological Reviews, 2013, 65, 967-986.	7.1	250
23	The Concise Guide to PHARMACOLOGY 2013/14: Ion Channels. British Journal of Pharmacology, 2013, 170, 1607-1651.	2.7	226
24	The Concise Guide to PHARMACOLOGY 2015/16: Overview. British Journal of Pharmacology, 2015, 172, 5729-5743.	2.7	220
25	How can drug discovery for psychiatric disorders be improved?. Nature Reviews Drug Discovery, 2007, 6, 189-201.	21.5	217
26	International Union of Pharmacology. LVI. Ghrelin Receptor Nomenclature, Distribution, and Function. Pharmacological Reviews, 2005, 57, 541-546.	7.1	215
27	Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocampus: Reversal by tianeptine. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2179-2184.	3.3	199
28	IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels. Nucleic Acids Research, 2009, 37, D680-D685.	6.5	199
29	International Union of Basic and Clinical Pharmacology. XC. Multisite Pharmacology: Recommendations for the Nomenclature of Receptor Allosterism and Allosteric Ligands. Pharmacological Reviews, 2014, 66, 918-947.	7.1	189
30	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Introduction and Other Protein Targets. British Journal of Pharmacology, 2021, 178, S1-S26.	2.7	183
31	The Concise Guide to PHARMACOLOGY 2013/14: Overview. British Journal of Pharmacology, 2013, 170, 1449-1458.	2.7	153
32	The Concise Guide to PHARMACOLOGY 2013/14: Catalytic Receptors. British Journal of Pharmacology, 2013, 170, 1676-1705.	2.7	148
33	Calcium antagonist subgroups. Trends in Pharmacological Sciences, 1985, 6, 109-114.	4.0	145
34	Assessment of ?Ca2+-antagonist? effects of drugs in K+-depolarized smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 1982, 318, 234-240.	1.4	142
35	A review of the current nomenclature for psychotropic agents and an introduction to the Neuroscience-based Nomenclature. European Neuropsychopharmacology, 2015, 25, 2318-2325.	0.3	135
36	The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: extending immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic Acids Research, 2020, 48, D1006-D1021.	6.5	131

3

#	Article	IF	Citations
37	Plasticity at hippocampal to prefrontal cortex synapses is impaired by loss of dopamine and stress: Importance for psychiatric diseases. Neurotoxicity Research, 2004, 6, 233-244.	1.3	123
38	BDNF increases rat brain mitochondrial respiratory coupling at complex I, but not complex II. European Journal of Neuroscience, 2004, 20, 1189-1196.	1.2	122
39	The Concise Guide to <scp>PHARMACOLOGY</scp> 2013/14: Transporters. British Journal of Pharmacology, 2013, 170, 1706-1796.	2.7	121
40	Involvement of AMPA receptor phosphorylation in antidepressant actions with special reference to tianeptine. European Journal of Neuroscience, 2007, 26, 3509-3517.	1.2	116
41	The Concise Guide to <scp>PHARMACOLOGY</scp> 2013/14: Ligandâ€Gated Ion Channels. British Journal of Pharmacology, 2013, 170, 1582-1606.	2.7	115
42	α ₂ â€Adrenoceptor subtypes and imidazolineâ€like binding sites in the rat brain. British Journal of Pharmacology, 1990, 99, 803-809.	2.7	109
43	The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study. Pharmacology Biochemistry and Behavior, 2003, 74, 811-825.	1.3	99
44	The IUPHAR/BPS guide to PHARMACOLOGY in 2022: curating pharmacology for COVID-19, malaria and antibacterials. Nucleic Acids Research, 2022, 50, D1282-D1294.	6.5	99
45	IUPHAR-DB: new receptors and tools for easy searching and visualization of pharmacological data. Nucleic Acids Research, 2011, 39, D534-D538.	6.5	96
46	IUPHAR-DB: updated database content and new features. Nucleic Acids Research, 2013, 41, D1083-D1088.	6.5	94
47	Brainâ€derived neurotrophic factorâ€mediated effects on mitochondrial respiratory coupling and neuroprotection share the same molecular signalling pathways. European Journal of Neuroscience, 2012, 35, 366-374.	1.2	93
48	Antidepressants reverse the attenuation of the neurotrophic MEK/MAPK cascade in frontal cortex by elevated platform stress; reversal of effects on LTP is associated with GluA1 phosphorylation. Neuropharmacology, 2009, 56, 37-46.	2.0	91
49	α2-Adrenoceptors: more subtypes but fewer functional differences. Trends in Pharmacological Sciences, 1994, 15, 119-123.	4.0	90
50	The Concise Guide to <scp>PHARMACOLOGY</scp> 2013/14: Nuclear Hormone Receptors. British Journal of Pharmacology, 2013, 170, 1652-1675.	2.7	90
51	Sub-Anesthetic Ketamine Modulates Intrinsic BOLD Connectivity Within the Hippocampal-Prefrontal Circuit in the Rat. Neuropsychopharmacology, 2014, 39, 895-906.	2.8	89
52	(Phenylpiperazinyl-butyl)oxindoles as Selective 5-HT ₇ Receptor Antagonists. Journal of Medicinal Chemistry, 2008, 51, 2522-2532.	2.9	86
53	Amyotrophic lateral sclerosis and denervation alter sphingolipids and up-regulate glucosylceramide synthase. Human Molecular Genetics, 2015, 24, 7390-7405.	1.4	84
54	A proposal for an updated neuropsychopharmacological nomenclature. European Neuropsychopharmacology, 2014, 24, 1005-1014.	0.3	83

#	Article	IF	Citations
55	Changes in mitochondrial function are pivotal in neurodegenerative and psychiatric disorders: How important is <scp>BDNF</scp> ?. British Journal of Pharmacology, 2014, 171, 2206-2229.	2.7	81
56	Inhibition of the constitutive activity of human 5-HT1A receptors by the inverse agonist, spiperone but not the neutral antagonist, WAY 100,635. British Journal of Pharmacology, 1997, 120, 737-739.	2.7	80
57	Direct inhibitory effects of some †calciumâ€antagonists' and trifluoperazine on the contractile proteins in smooth muscle. British Journal of Pharmacology, 1983, 79, 225-231.	2.7	78
58	Acute ketamine challenge increases resting state prefrontal-hippocampal connectivity in both humans and rats. Psychopharmacology, 2015, 232, 4231-4241.	1.5	76
59	"Calcium antagonists― A class of drugs with a bright future. Part II. Determination of basic pharmacological properties. Life Sciences, 1984, 35, 575-587.	2.0	75
60	Mitochondria as target for antiischemic drugs. Advanced Drug Delivery Reviews, 2001, 49, 151-174.	6.6	74
61	Changes in EEG spectral power in the prefrontal cortex of conscious rats elicited by drugs interacting with dopaminergic and noradrenergic transmission. British Journal of Pharmacology, 1999, 128, 1045-1054.	2.7	72
62	Positive allosteric modulators of AMPA receptors are neuroprotective against lesions induced by an NMDA agonist in neonatal mouse brain. Brain Research, 2003, 970, 221-225.	1.1	72
63	Direct activation of Ca ²⁺ channels by palmitoyl carnitine, a putative endogenous ligand. British Journal of Pharmacology, 1987, 92, 457-468.	2.7	71
64	A pathophysiological paradigm for the therapy of psychiatric disease. Nature Reviews Drug Discovery, 2005, 4, 467-476.	21.5	70
65	Interactions between a ?calcium channel agonist?, Bay K 8644, and calcium antagonists differentiate calcium antagonist subgroups in K+-depolarized smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 1984, 328, 69-75.	1.4	69
66	Emotional memory impairments in a genetic rat model of depression: involvement of 5-HT/MEK/Arc signaling in restoration. Molecular Psychiatry, 2012, 17, 173-184.	4.1	68
67	ANTAGONISM OF ADENOSINE 5′â€TRIPHOSPHATEâ€INDUCED RELAXATION BY 2â€2â€2â€PYRIDYLISATOGEN OF GUINEAâ€PIG CAECUM. British Journal of Pharmacology, 1975, 53, 575-583.	N IN THE T	AENIA
68	4H-1,2,4-Pyridothiadiazine 1,1-Dioxides and 2,3-Dihydro-4H-1,2,4-pyridothiadiazine 1,1-Dioxides Chemically Related to Diazoxide and Cyclothiazide as Powerful Positive Allosteric Modulators of (R/S)-2-Amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic Acid Receptors:Â Design, Synthesis, Pharmacology, and Structureâ ² Activity Relationships. Journal of Medicinal Chemistry, 1998, 41,	2.9	65
69	2946-2959. Regulation of AMPA receptor surface trafficking and synaptic plasticity by a cognitive enhancer and antidepressant molecule. Molecular Psychiatry, 2013, 18, 471-484.	4.1	65
70	Calcium Channel Activation Does Not Increase Release of Endothelial-Derived Relaxant Factors (EDRF) in Rat Aorta Although Tonic Release of EDRF May Modulate Calcium Channel Activity in Smooth Muscle. Journal of Cardiovascular Pharmacology, 1986, 8, 1130-1137.	0.8	61
71	A rational roadmap for SARSâ€CoVâ€2/COVIDâ€19 pharmacotherapeutic research and development: IUPHAR Review 29. British Journal of Pharmacology, 2020, 177, 4942-4966.	2.7	61
72	Run for your life. Nature, 2012, 487, 295-296.	13.7	60

#	Article	IF	CITATIONS
73	GAP-43 is essential for the neurotrophic effects of BDNF and positive AMPA receptor modulator S18986. Cell Death and Differentiation, 2009, 16, 624-637.	5.0	58
74	Effects of phencyclidine (PCP) and MK 801 on the EEGq in the prefrontal cortex of conscious rats; antagonism by clozapine, and antagonists of AMPA-, $\hat{l}\pm 1$ - and 5-HT2A -receptors. British Journal of Pharmacology, 2002, 135, 65-78.	2.7	57
75	Endocannabinoids potently protect the newborn brain against AMPA-kainate receptor-mediated excitotoxic damage. British Journal of Pharmacology, 2006, 148, 442-451.	2.7	56
76	Neurotrophins and Cytokines in Neuronal Plasticity. Novartis Foundation Symposium, 2008, 289, 222-237.	1.2	56
77	Anti-Correlated Cortical Networks of Intrinsic Connectivity in the Rat Brain. Brain Connectivity, 2013, 3, 503-511.	0.8	55
78	"Calcium antagonists― A class of drugs with a bright future. Part I. Cellular calcium homeostasis and calcium as a coupling messenger. Life Sciences, 1983, 33, 2571-2581.	2.0	53
79	Inhibition of \hat{i}^2 -Glucocerebrosidase Activity Preserves Motor Unit Integrity in a Mouse Model of Amyotrophic Lateral Sclerosis. Scientific Reports, 2017, 7, 5235.	1.6	53
80	The influence of the initial stretch and the agonistâ€induced tone on the effect of basal and stimulated release of EDRF. British Journal of Pharmacology, 1990, 100, 767-773.	2.7	52
81	Are We Reaching the Limits of Homo sapiens?. Frontiers in Physiology, 2017, 8, 812.	1.3	52
82	Sphingolipid Metabolism Is Dysregulated at Transcriptomic and Metabolic Levels in the Spinal Cord of an Animal Model of Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, 2017, 10, 433.	1.4	52
83	A One-Step Synthesis of 2-(2-Pyridyl)-3H-indol-3-oneN-Oxide:Â Is It an Efficient Spin Trap for Hydroxyl Radical?. Journal of Organic Chemistry, 2000, 65, 4460-4463.	1.7	50
84	S 14297, a novel selective ligand at cloned human dopamine D3 receptors, blocks 7-OH-DPAT-induced hypothermia in rats. European Journal of Pharmacology, 1994, 260, R3-R5.	1.7	49
85	Neuroprotective effects of modulators of P2 receptors in primary culture of CNS neurones. Neuropharmacology, 1999, 38, 1335-1342.	2.0	49
86	IDENTIFICATION OF SEPARATE RECEPTORS FOR ADENOSINE AND ADENOSINE 5′â€TRIPHOSPHATE IN CAUSING RELAXATIONS OF THE ISOLATED TAENIA OF THE GUINEAâ€PIG CAECUM. British Journal of Pharmacology, 1976, 57, 305-310.	G 2.7	48
87	Clozapine inhibits serotoninergic transmission by an action at $\hat{l}\pm 1$ -adrenoceptors not at 5-HT1A receptors. European Journal of Pharmacology, 1994, 260, 79-83.	1.7	47
88	Optimization of (Arylpiperazinylbutyl)oxindoles Exhibiting Selective 5-HT ₇ Receptor Antagonist Activity. Journal of Medicinal Chemistry, 2011, 54, 6657-6669.	2.9	47
89	Agomelatine, a melatonin receptor agonist with 5-HT2C receptor antagonist properties, protects the developing murine white matter against excitotoxicity. European Journal of Pharmacology, 2008, 588, 58-63.	1.7	45
90	1,9-Alkano-bridged 2,3,4,5-tetrahydro-1H-3-benzazepines with affinity for the .alpha.2-adrenoceptor and the 5-HT1A receptor. Journal of Medicinal Chemistry, 1990, 33, 633-641.	2.9	43

#	Article	IF	CITATIONS
91	Modulation of $\hat{l}\pm 1$ -Adrenoceptors in Rat Left Ventricle by Ischaemia and Acyl Carnitines. Journal of Cardiovascular Pharmacology, 1993, 21, 869-873.	0.8	43
92	Brain plasticity and pathology in psychiatric disease: sites of action for potential therapy. Current Opinion in Pharmacology, 2003, 3, 33-40.	1.7	43
93	Protection of stress-induced impairment of hippocampal/prefrontal LTP through blockade of glucocorticoid receptors. Experimental Neurology, 2008, 211, 593-596.	2.0	43
94	[3H]p-Aminoclonidine and [3H]idazoxan label different populations of imidazoline sites on rat kidney. European Journal of Pharmacology, 1993, 232, 79-87.	1.7	42
95	(8a.alpha.,12a.alpha.,13a.alpha.)-5,8,8a,9,10,11,12,12a,13,13a,-Decahydro-3-methoxy-12-(methylsulfonyl)-6H-isoc a potent and highly selective .alpha.2-adrenoceptor antagonist. Journal of Medicinal Chemistry, 1989, 32, 2034-2036.	quino[2,1- 2.9	-g][1,6]napl 41
96	Selective inhibition of extra-synaptic $\hat{l}\pm 5$ -GABA A receptors by S44819, a new therapeutic agent. Neuropharmacology, 2017, 125, 353-364.	2.0	40
97	Neuroprotective properties of tianeptine: interactions with cytokines. Neuropharmacology, 2003, 44, 801-809.	2.0	39
98	2,3-Benzodiazepine-type AMPA receptor antagonists and their neuroprotective effects. Neurochemistry International, 2008, 52, 166-183.	1.9	39
99	Influence of the novel antidepressant and melatonin agonist/serotonin2C receptor antagonist, agomelatine, on the rat sleep–wake cycle architecture. Psychopharmacology, 2009, 205, 93-106.	1.5	39
100	The low-frequency blood oxygenation level-dependent functional connectivity signature of the hippocampal–prefrontal network in the rat brain. Neuroscience, 2013, 228, 243-258.	1.1	36
101	Defining the brain circuits involved in psychiatric disorders: IMI-NEWMEDS. Nature Reviews Drug Discovery, 2017, 16, 1-2.	21.5	35
102	The effects of AMPA receptor antagonists in models of stroke and neurodegeneration. European Journal of Pharmacology, 2005, 519, 58-67.	1.7	34
103	Changing surface charge with salicylate differentiates between subgroups of calciumâ€antagonists. British Journal of Pharmacology, 1984, 83, 211-220.	2.7	32
104	Competitive interactions between Bay K 8644 and nifedipine in K+ depolarized smooth muscle: a passive role for Ca2+?. Naunyn-Schmiedeberg's Archives of Pharmacology, 1985, 328, 464-466.	1.4	31
105	Common efficacy of psychotropic drugs in restoring stress-induced impairment of prefrontal plasticity. Neurotoxicity Research, 2006, 10, 193-198.	1.3	31
106	Ambroxol Hydrochloride Improves Motor Functions and Extends Survival in a Mouse Model of Familial Amyotrophic Lateral Sclerosis. Frontiers in Pharmacology, 2019, 10, 883.	1.6	31
107	Antagonism of Ca2+-induced contractions of K+-depolarized smooth musle by local anaesthetics. European Journal of Pharmacology, 1985, 108, 143-150.	1.7	30
108	A Three Binding Site Hypothesis for the Interaction of Ligands with Monoamine G Protein-coupled Receptors: Implications for Combinatorial Ligand Design. QSAR and Combinatorial Science, 1999, 18, 561-572.	1.4	30

7

#	Article	IF	Citations
109	Species-conserved reconfigurations of brain network topology induced by ketamine. Translational Psychiatry, 2016, 6, e786-e786.	2.4	30
110	The neuroprotective activity of 8-alkylamino-1,4-benzoxazine antioxidants. European Journal of Pharmacology, 2001, 424, 189-194.	1.7	29
111	Design, synthesis and pharmacological evaluation of new series of naphthalenic analogues as melatoninergic (MT1/MT2) and serotoninergic 5-HT2C dual ligands (I). European Journal of Medicinal Chemistry, 2012, 49, 310-323.	2.6	29
112	Sphingolipids metabolism alteration in the central nervous system: Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Seminars in Cell and Developmental Biology, 2021, 112, 82-91.	2.3	28
113	In search of the mechanisms of ketamine's antidepressant effects: How robust is the evidence behind the mTor activation hypothesis. F1000Research, 0, 5, 634.	0.8	28
114	Structure-affinity relationships of 12-sulfonyl derivatives of 5,8,8a,9,10,11,12,12a,13,13a-decahydro-6H-isoquino[2,1-g][1,6]naphthyridines at .alphaadrenoceptors. Journal of Medicinal Chemistry, 1991, 34, 705-717.	2.9	27
115	The protective effect of tianeptine on Gp120â€induced apoptosis in astroglial cells: role of GS and NOS, and NFâ€PB suppression. British Journal of Pharmacology, 2011, 164, 1590-1599.	2.7	26
116	A new nomenclature for classifying psychotropic drugs. British Journal of Clinical Pharmacology, 2017, 83, 1614-1616.	1.1	26
117	Interaction of phorbol esters with Ca ²⁺ channels in smooth muscle. British Journal of Pharmacology, 1987, 91, 377-384.	2.7	25
118	The AMPA receptor positive allosteric modulator, S18986, is neuroprotective against neonatal excitotoxic and inflammatory brain damage through BDNF synthesis. Neuropharmacology, 2009, 57, 277-286.	2.0	25
119	Tianeptine potentiates AMPA receptors by activating CaMKII and PKA via the p38, p42/44 MAPK and JNK pathways. Neurochemistry International, 2011, 59, 1109-1122.	1.9	25
120	S 14506: novel receptor coupling at 5-HT1A receptors. Neuropharmacology, 2001, 40, 334-344.	2.0	24
121	Differences Between the Effects of Calcium Antagonists in the Pithed Rat Preparation. Journal of Cardiovascular Pharmacology, 1982, 4, 973-979.	0.8	23
122	Calcium Antagonist Properties of Diclofurime Isomers. II. Molecular Aspects. Journal of Cardiovascular Pharmacology, 1987, 9, 469-477.	0.8	23
123	Editorial. Neuropharmacology, 2009, 56, 1.	2.0	23
124	The expanding role of immunopharmacology: <scp>IUPHAR</scp> Review 16. British Journal of Pharmacology, 2015, 172, 4217-4227.	2.7	23
125	A novel GABAA alpha 5 receptor inhibitor with therapeutic potential. European Journal of Pharmacology, 2015, 764, 497-507.	1.7	23
126	The effects of calcium antagonists on calcium overload contractures in embryonic chick myocytes induced by ouabain and veratrine. British Journal of Pharmacology, 1989, 97, 83-94.	2.7	22

#	Article	IF	CITATIONS
127	Mss4Gene Is Up-Regulated in Rat Brain after Chronic Treatment with Antidepressant and Down-Regulated When Rats Are Anhedonic. Molecular Pharmacology, 2002, 62, 1332-1338.	1.0	22
128	The age-performance relationship in the general population and strategies to delay age related decline in performance. Archives of Public Health, 2019, 77, 51.	1.0	22
129	Clozapine counteracts a ketamine-induced depression of hippocampal-prefrontal neuroplasticity and alters signaling pathway phosphorylation. PLoS ONE, 2017, 12, e0177036.	1.1	22
130	Rapid effects of melatonin on hormonal and behavioral stressful responses in ewes. Psychoneuroendocrinology, 2013, 38, 1426-1434.	1.3	21
131	The effect of chronic tianeptine administration on the brain mitochondria: direct links with an animal model of depression. Molecular Neurobiology, 2016, 53, 7351-7362.	1.9	21
132	Interaction of palmitoyl carnitine with calcium antagonists in myocytes. British Journal of Pharmacology, 1989, 97, 443-450.	2.7	20
133	Neuroprotective properties of lifarizine compared with those of other agents in a mouse model of focal cerebral ischaemia. British Journal of Pharmacology, 1995, 115, 1425-1432.	2.7	20
134	Multiple exposures to familiar conspecific withdrawal is a novel robust stress paradigm in ewes. Physiology and Behavior, 2012, 105, 203-208.	1.0	19
135	Developments in purine and pyridimidine receptor-based therapeutics. Drug Development Research, 1996, 39, 436-441.	1.4	18
136	Receptor nomenclature. Drug Development Research, 1996, 39, 461-466.	1.4	18
137	Cognition- and circuit-based dysfunction in a mouse model of $22q11.2$ microdeletion syndrome: effects of stress. Translational Psychiatry, 2020, 10, 41.	2.4	18
138	Egis-11150: A candidate antipsychotic compound with procognitive efficacy in rodents. Neuropharmacology, 2013, 64, 254-263.	2.0	17
139	Behavioural pharmacology of the $\hat{l}\pm 5$ -GABA A receptor antagonist S44819: Enhancement and remediation of cognitive performance in preclinical models. Neuropharmacology, 2017, 125, 30-38.	2.0	17
140	Functional interactions of calciumâ€antagonists in K ⁺ â€depolarized smooth muscle. British Journal of Pharmacology, 1983, 80, 485-488.	2.7	15
141	Drugs in sport: a scientist–athlete's perspective: from ambition to neurochemistry. British Journal of Pharmacology, 2008, 154, 496-501.	2.7	15
142	Selective antagonism of calcium channel activators by fluspirilene. British Journal of Pharmacology, 1990, 100, 211-216.	2.7	14
143	Clinical trials in neonates: Ethical issues. Seminars in Fetal and Neonatal Medicine, 2007, 12, 318-323.	1.1	14
144	The hippocampal to prefrontal cortex circuit in mice: a promising electrophysiological signature in models for psychiatric disorders. Brain Structure and Function, 2016, 221, 2385-2391.	1.2	14

#	Article	IF	Citations
145	Key challenges for the creation and maintenance of specialist protein resources. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1005-1013.	1.5	13
146	New directions for drug discovery. Dialogues in Clinical Neuroscience, 2006, 8, 295-301.	1.8	13
147	Antagonists and Activators at Calcium Channels Annals of the New York Academy of Sciences, 1988, 522, 248-258.	1.8	12
148	Resolution of controversies in drug/receptor interactions by protein structure. Limitations and pharmacological solutions. Neuropharmacology, 2011, 60, 3-6.	2.0	12
149	Affinity of 2-(tetrahydroisoquinolin-2-ylmethyl)- and 2-(isoindolin-2-ylmethyl)imidazolines for alphaadrenoceptors. Differential affinity of imidazolines for the [3H]idazoxan-labeled alpha.2-adrenoceptor vs the [3H]yohimbine-labeled site. Journal of Medicinal Chemistry, 1990, 33, 596-600.	2.9	11
150	Differential effects of calcium channel antagonists on histamine and pentagastrin-stimulated gastric acid secretion in the rat. Agents and Actions, 1985, 16, 491-495.	0.7	10
151	Classification of calcium channels and calcium antagonists: Progress report. Cardiovascular Drugs and Therapy, 1992, 6, 35-39.	1.3	10
152	Mitochondrial pharmacology: energy, injury and beyond. British Journal of Pharmacology, 2014, 171, 1795-1797.	2.7	10
153	Age-Related Upper Limits in Physical Performances. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 591-599.	1.7	10
154	Drug repositioning in neurodegeneration: An overview of the use of ambroxol in neurodegenerative diseases. European Journal of Pharmacology, 2020, 884, 173446.	1.7	9
155	Role of spin trapping and P2Y receptor antagonism in the neuroprotective effects of 2,2′-pyridylisatogen tosylate and related compounds. European Journal of Pharmacology, 2002, 444, 53-60.	1.7	8
156	Creating a specialist protein resource network: a meeting report for the protein bioinformatics and community resources retreat: Figure 1 Database: the Journal of Biological Databases and Curation, 2015, 2015, bav063.	1.4	8
157	Class A Orphans (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	8
158	Strategies for neuroprotection in the newborn. Drug Discovery Today: Therapeutic Strategies, 2004, 1, 77-82.	0.5	7
159	The IUPHAR Guide to Immunopharmacology: connecting immunology and pharmacology. Immunology, 2020, 160, 10-23.	2.0	7
160	Class A Orphans (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	7
161	The guineaâ€pig ileum preparation as a model for 5â€HT _{1A} receptors: anomalous effects with RSâ€30199–193. British Journal of Pharmacology, 1991, 104, 519-525.	2.7	6
162	Voltage-dependent calcium channels: structures and drug-binding sites. Biochemical Society Transactions, 1992, 20, 147-153.	1.6	6

#	Article	IF	Citations
163	Transduction Is a Major Factor Influencing Receptor Characterization. Annals of the New York Academy of Sciences, 1997, 812, 29-40.	1.8	6
164	Effects of EGIS-7625, a Selective and Competitive 5-HT2BReceptor Antagonist. Cardiovascular Drugs and Therapy, 2003, 17, 427-434.	1.3	6
165	Acute Stress Affects the Expression of Hippocampal Mu Oscillations in an Age-Dependent Manner. Frontiers in Aging Neuroscience, 2017, 9, 295.	1.7	5
166	Plan S: A threat to quality of science?. Science, 2019, 363, 462-462.	6.0	4
167	The $\hat{l}\pm 2$ -adrenoceptor antagonist SK & F 104078 has high affinity for 5-HT1A and 5-HT2 receptors. European Journal of Pharmacology, 1989, 166, 315-318.	1.7	3
168	Changes in [³ H]â€PK 11195 and [³ H]â€8â€OHâ€DPAT binding following forebrain ischaemia in the gerbil. British Journal of Pharmacology, 1993, 109, 437-442.	2.7	3
169	Up and Down Regulation of Synaptic Strength at Hippocampal to Prefrontal Cortex Synapses., 2004,, 107-130.		3
170	GuideToPharmacology.org – an update. British Journal of Pharmacology, 2012, 167, 697-698.	2.7	3
171	Class A Orphans in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	3
172	Aging, VO ₂ max, entropy, and COVID-19. Indian Journal of Pharmacology, 2022, 54, 58.	0.4	3
173	Brain circuits at risk in psychiatric diseases and pharmacological pathways. Therapie, 2021, 76, 75-86.	0.6	2
174	Role of Lipids and Lipid Metabolites in Myocardial Ischaemia. , 1992, , 170-188.		2
175	Current status of drug receptor nomenclature: receptor closure? The role of NC-IUPHAR. Expert Opinion on Investigational Drugs, 2004, 13, 461-464.	1.9	1
176	Neuroprotection in the newborn infant: interactions between stress, glutamate, glucocorticoids and development. Developmental Medicine and Child Neurology, 2001, 43, 10-12.	1.1	1
177	Introduction to the special issue on High Resolution Neuropharmacology. Neuropharmacology, 2011, 60, 1-2.	2.0	1
178	Calling all pharmacologists with time to spare! We need you! Build the drug discovery knowledge base, GuidetoPharmacology.org. British Journal of Pharmacology, 2012, 167, 1393-1394.	2.7	1
179	Scientists on the Spot: the Guide to Immunopharmacology as a new resource for the cardiovascular community. Cardiovascular Research, 2019, 115, e5-e6.	1.8	1
180	Guide to Immunopharmacology: a database to boost immunology education, research and therapy. Immunology, 2020, 160, 1-2.	2.0	1

#	Article	IF	CITATIONS
181	lonotropic glutamate receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	1
182	Phenotypical Screening on Neuronal Plasticity in Hippocampal-Prefrontal Cortex Connectivity Reveals an Antipsychotic with a Novel Profile. Cells, 2022, 11, 1181.	1.8	1
183	Channel nomenclature: IUPHAR recommendations. Trends in Pharmacological Sciences, 1993, 14, 435-436.	4.0	O
184	Acylation Differentiates Two Forms of Agonist Binding to Rat 5-HT1AReceptors Annals of the New York Academy of Sciences, 1997, 812, 178-178.	1.8	0
185	P2-009 The positive allosteric modulator of AMPA receptors, S 18986, is neuroprotective in neonatal mouse brain: interaction with neurotrophins. Neurobiology of Aging, 2004, 25, S226.	1.5	O
186	19 IUPHAR: Immunology, metabolism and natural products. Biochemical Pharmacology, 2017, 139, 107.	2.0	0
187	Ionotropic glutamate receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021,	0.2	O
188	Alliance between the International Union of Basic and Clinical Pharmacology and the Indian Pharmacological Society for Health, Education, Drug Discovery, and Development in India. Indian Journal of Pharmacology, 2016, 48, 229.	0.4	0
189	Class A Orphans (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	O