Zhengfan Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2992273/publications.pdf

Version: 2024-02-01

69 papers

8,815 citations

42 h-index

66343

95266 68 g-index

72 all docs 72 docs citations

times ranked

72

10300 citing authors

#	Article	IF	CITATIONS
1	Recent progress on the activation of the cGAS–STING pathway and its regulation by biomolecular condensation. Journal of Molecular Cell Biology, 2022, 14, .	3.3	5
2	Manganese enhances the antitumor function of CD8+ T cells by inducing type I interferon production. Cellular and Molecular Immunology, 2021, 18, 1571-1574.	10.5	32
3	A human cell-based SARS-CoV-2 vaccine elicits potent neutralizing antibody responses and protects mice from SARS-CoV-2 challenge. Emerging Microbes and Infections, 2021, 10, 1555-1573.	6.5	6
4	Manganese salts function as potent adjuvants. Cellular and Molecular Immunology, 2021, 18, 1222-1234.	10.5	106
5	Differences in IFN \hat{l}^2 secretion upon Rab1 inactivation in cells exposed to distinct innate immune stimuli. Cellular and Molecular Immunology, 2021, 18, 1590-1592.	10.5	6
6	The STING phase-separator suppresses innate immune signalling. Nature Cell Biology, 2021, 23, 330-340.	10.3	96
7	Golgi apparatus-synthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING. Immunity, 2021, 54, 962-975.e8.	14.3	76
8	T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	27
9	Sensing of cytoplasmic chromatin by cGAS activates innate immune response in SARS-CoV-2 infection. Signal Transduction and Targeted Therapy, 2021, 6, 382.	17.1	53
10	NLRP3 inflammasome activation by Foot-and-mouth disease virus infection mainly induced by viral RNA and non-structural protein 2B. RNA Biology, 2020, 17, 335-349.	3.1	35
11	Mn2+ Directly Activates cGAS and Structural Analysis Suggests Mn2+ Induces a Noncanonical Catalytic Synthesis of 2′3′-cGAMP. Cell Reports, 2020, 32, 108053.	6.4	135
12	Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Research, 2020, 30, 966-979.	12.0	349
13	TBK1-Mediated DRP1 Targeting Confers Nucleic Acid Sensing to Reprogram Mitochondrial Dynamics and Physiology. Molecular Cell, 2020, 80, 810-827.e7.	9.7	35
14	Metalloimmunology: The metal ion-controlled immunity. Advances in Immunology, 2020, 145, 187-241.	2.2	148
15	NLRP6 self-assembles into a linear molecular platform following LPS binding and ATP stimulation. Scientific Reports, 2020, 10, 198.	3.3	23
16	Transfer of cGAMP into Bystander Cells via LRRC8 Volume-Regulated Anion Channels Augments STING-Mediated Interferon Responses and Anti-viral Immunity. Immunity, 2020, 52, 767-781.e6.	14.3	175
17	Non-hematopoietic STAT6 induces epithelial tight junction dysfunction and promotes intestinal inflammation and tumorigenesis. Mucosal Immunology, 2019, 12, 1304-1315.	6.0	33
18	Apoptotic Caspases Suppress Type I Interferon Production via the Cleavage of cGAS, MAVS, and IRF3. Molecular Cell, 2019, 74, 19-31.e7.	9.7	183

#	Article	IF	CITATIONS
19	STING directly activates autophagy to tune the innate immune response. Cell Death and Differentiation, 2019, 26, 1735-1749.	11.2	247
20	Manganese Increases the Sensitivity of the cGAS-STING Pathway for Double-Stranded DNA and Is Required for the Host Defense against DNA Viruses. Immunity, 2018, 48, 675-687.e7.	14.3	369
21	Inverse correlation of Vβ ⁺ Tâ€eell recovery with <scp>EBV</scp> reactivation after haematopoietic stem cell transplantation. British Journal of Haematology, 2018, 180, 276-285.	2.5	23
22	Cross-talk between bacterial PAMPs and host PRRs. National Science Review, 2018, 5, 791-792.	9.5	12
23	Novel Mechanism for Cyclic Dinucleotide Degradation Revealed by Structural Studies of Vibrio Phosphodiesterase V-cGAP3. Journal of Molecular Biology, 2018, 430, 5080-5093.	4.2	13
24	p38 inhibition provides anti–DNA virus immunity by regulation of USP21 phosphorylation and STING activation. Journal of Experimental Medicine, 2017, 214, 991-1010.	8.5	76
25	N4 DNA recognition by STAT6: structural and functional implications. Protein and Cell, 2017, 8, 240-241.	11.0	0
26	Nonspecific DNA Binding of cGAS N Terminus Promotes cGAS Activation. Journal of Immunology, 2017, 198, 3627-3636.	0.8	67
27	Inflammasome Activation Triggers Caspase-1-Mediated Cleavage of cGAS to Regulate Responses to DNA Virus Infection. Immunity, 2017, 46, 393-404.	14.3	195
28	HCFC2 is needed for IRF1- and IRF2-dependent <i>Tlr3</i> transcription and for survival during viral infections. Journal of Experimental Medicine, 2017, 214, 3263-3277.	8.5	23
29	NEMO–IKKβ Are Essential for IRF3 and NF-κB Activation in the cGAS–STING Pathway. Journal of Immunology, 2017, 199, 3222-3233.	0.8	169
30	Pseudorabies Virus dUTPase UL50 Induces Lysosomal Degradation of Type I Interferon Receptor 1 and Antagonizes the Alpha Interferon Response. Journal of Virology, 2017, 91, .	3.4	50
31	STING-mediated DNA sensing in cancer immunotherapy. Science China Life Sciences, 2017, 60, 563-574.	4.9	12
32	Caspases control antiviral innate immunity. Cellular and Molecular Immunology, 2017, 14, 736-747.	10.5	41
33	MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner. PLoS Pathogens, 2017, 13, e1006720.	4.7	136
34	Cyclophilin A-regulated ubiquitination is critical for RIG-I-mediated antiviral immune responses. ELife, 2017, 6, .	6.0	63
35	Improved clinical outcomes of rhG-CSF-mobilized blood and marrow haploidentical transplantation compared to propensity score-matched rhG-CSF-primed peripheral blood stem cell haploidentical transplantation: a multicenter study. Science China Life Sciences, 2016, 59, 1139-1148.	4.9	13
36	cGASâ€cGAMPâ€5TING: The three musketeers of cytosolic DNA sensing and signaling. IUBMB Life, 2016, 68, 858-870.	3.4	107

#	Article	IF	CITATIONS
37	Cyclic (di)nucleotides: the common language shared by microbe and host. Current Opinion in Microbiology, 2016, 30, 79-87.	5.1	25
38	Accelerated progression of Hodgkin's-like lymphomas in golli deficient SJL mice. Cellular Immunology, 2016, 302, 41-49.	3.0	1
39	TRIM30 $\hat{l}\pm$ Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING. PLoS Pathogens, 2015, 11, e1005012.	4.7	141
40	The kinase MST4 limits inflammatory responses through direct phosphorylation of the adaptor TRAF6. Nature Immunology, 2015, 16, 246-257.	14.5	82
41	Identification and characterization of phosphodiesterases that specifically degrade 3′3′-cyclic GMP-AMP. Cell Research, 2015, 25, 539-550.	12.0	83
42	TRIM14 is a mitochondrial adaptor that facilitates retinoic acid-inducible gene-l–like receptor-mediated innate immune response. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E245-54.	7.1	124
43	The essential adaptors of innate immune signaling. Protein and Cell, 2013, 4, 27-39.	11.0	88
44	Poly(C)-binding protein 1 (PCBP1) mediates housekeeping degradation of mitochondrial antiviral signaling (MAVS). Cell Research, 2012, 22, 717-727.	12.0	66
45	Activation of STAT6 by STING Is Critical for Antiviral Innate Immunity. Cell, 2011, 147, 436-446.	28.9	316
46	ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8653-8658.	7.1	702
47	PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nature Immunology, 2009, 10, 1300-1308.	14.5	295
48	TLR4/CD14-mediated PI3K activation is an essential component of interferon-dependent VSV resistance in macrophages. Molecular Immunology, 2008, 45, 2790-2796.	2.2	46
49	Pellino 3b Negatively Regulates Interleukin-1-induced TAK1-dependent NFκB Activation. Journal of Biological Chemistry, 2008, 283, 14654-14664.	3.4	41
50	Interleukin-1 (IL-1)-induced TAK1-dependent Versus MEKK3-dependent NFκB Activation Pathways Bifurcate at IL-1 Receptor-associated Kinase Modification. Journal of Biological Chemistry, 2007, 282, 6075-6089.	3.4	101
51	Hypersusceptibility to Vesicular Stomatitis Virus Infection in Dicer1-Deficient Mice Is Due to Impaired miR24 and miR93 Expression. Immunity, 2007, 27, 123-134.	14.3	336
52	GENETIC ANALYSIS OF HOST RESISTANCE: Toll-Like Receptor Signaling and Immunity at Large. Annual Review of Immunology, 2006, 24, 353-389.	21.8	713
53	R-form LPS, the master key to the activation of TLR4/MD-2-positive cells. European Journal of Immunology, 2006, 36, 701-711.	2.9	149
54	Genetic Analysis of Innate Immunity. Advances in Immunology, 2006, 91, 175-226.	2.2	31

#	Article	IF	CITATIONS
55	Details of Toll-like receptor:adapter interaction revealed by germ-line mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10961-10966.	7.1	122
56	CD14 is required for MyD88-independent LPS signaling. Nature Immunology, 2005, 6, 565-570.	14.5	574
57	Antagonism between MyD88- and TRIF-dependent signals in B7RP-1 up-regulation. European Journal of Immunology, 2005, 35, 1918-1927.	2.9	18
58	A Toll-Like Receptor 2-Responsive Lipid Effector Pathway Protects Mammals against Skin Infections with Gram-Positive Bacteria. Infection and Immunity, 2005, 73, 4512-4521.	2.2	205
59	Toll-like receptor 3-mediated activation of NF-ÂB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-Â. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3533-3538.	7.1	336
60	IRAK4 Kinase Activity Is Redundant for Interleukin-1 (IL-1) Receptor-associated Kinase Phosphorylation and IL-1 Responsiveness. Journal of Biological Chemistry, 2004, 279, 26748-26753.	3.4	95
61	Protein Kinase R (PKR) Interacts with and Activates Mitogen-activated Protein Kinase Kinase 6 (MKK6) in Response to Double-stranded RNA Stimulation. Journal of Biological Chemistry, 2004, 279, 37670-37676.	3.4	97
62	Identification of a human NF-κB-activating protein, TAB3. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2028-2033.	7.1	78
63	Poly(dl·dC)-induced Toll-like Receptor 3 (TLR3)-mediated Activation of NFκB and MAP Kinase Is through an Interleukin-1 Receptor-associated Kinase (IRAK)-independent Pathway Employing the Signaling Components TLR3-TRAF6-TAK1-TAB2-PKR. Journal of Biological Chemistry, 2003, 278, 16713-16719.	3.4	271
64	IRAK-Dependent Phosphorylation of Stat1 on Serine 727 in Response to Interleukin-1 and Effects on Gene Expression. Journal of Interferon and Cytokine Research, 2003, 23, 183-192.	1.2	40
65	Pellino 1 Is Required for Interleukin-1 (IL-1)-mediated Signaling through Its Interaction with the IL-1 Receptor-associated Kinase 4 (IRAK4)-IRAK-Tumor Necrosis Factor Receptor-associated Factor 6 (TRAF6) Complex. Journal of Biological Chemistry, 2003, 278, 10952-10956.	3.4	162
66	Interleukin-1 (IL-1) Receptor-Associated Kinase-Dependent IL-1-Induced Signaling Complexes Phosphorylate TAK1 and TAB2 at the Plasma Membrane and Activate TAK1 in the Cytosol. Molecular and Cellular Biology, 2002, 22, 7158-7167.	2.3	263
67	Role of NFÂB activator Act1 in CD40-mediated signaling in epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9386-9391.	7.1	64
68	Nuclear reassemblyin vitro is independent of nucleosome/chromatin assembly. Science in China Series C: Life Sciences, 1998, 41, 512-519.	1.3	3
69	Identification of a DNase activated inXenopus egg extracts undergoing apoptosis. Science Bulletin, 1998, 43, 522-526.	1.7	6