Aharon Gedanken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2990410/publications.pdf

Version: 2024-02-01

689 papers

41,453 citations

102 h-index 164 g-index

698 all docs

698 docs citations

698 times ranked

38663 citing authors

#	Article	IF	CITATIONS
1	Polydopamine decorated carbon dots nanocomposite as an effective adsorbent for phenolic compounds. Journal of Applied Polymer Science, 2022, 139, 51769.	2.6	3
2	Solar intervention in bioenergy., 2022,, 621-642.		0
3	Acoustic Green Synthesis of Graphene-Gallium Nanoparticles and PEDOT:PSS Hybrid Coating for Textile To Mitigate Electromagnetic Radiation Pollution. ACS Applied Nano Materials, 2022, 5, 1644-1655.	5. 0	61
4	Antimicrobial Activities of Conducting Polymers and Their Composites. Macromol, 2022, 2, 78-99.	4.4	24
5	Synthesis of Doped/Hybrid Carbon Dots and Their Biomedical Application. Nanomaterials, 2022, 12, 898.	4.1	22
6	Mussel-Inspired Polynorepinephrine/MXene-Based Magnetic Nanohybrid for Electromagnetic Interference Shielding in X-Band and Strain-Sensing Performance. Langmuir, 2022, 38, 3936-3950.	3.5	65
7	Synergy between Cobalt–Chromium-Layered Double Hydroxide Nanosheets and Oxidized Carbon Nanotubes for Electrocatalytic Oxygen Evolution. ACS Applied Nano Materials, 2022, 5, 4091-4101.	5.0	4
8	Effects of a ZnCuO-Nanocoated Ti-6Al-4V Surface on Bacterial and Host Cells. Materials, 2022, 15, 2514.	2.9	1
9	Oneâ€Pot Synthesis of Deep Blue Hydrophobic Carbon Dots with Room Temperature Phosphorescence, White Light Emission, and Explosive Sensor. Advanced Electronic Materials, 2022, 8, .	5.1	16
10	Rhenium Sulfide Incorporated in Molybdenum Sulfide Nanosheets for High-Performance Symmetric Supercapacitors with Enhanced Capacitance. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18570-18577.	8.0	18
11	Nitrogen-doped carbon dots as a highly selective and sensitive fluorescent probe for sensing Mg2+ ions in aqueous solution, and their application in the detection and imaging of intracellular Mg2+ ions. Sensors and Actuators B: Chemical, 2022, 366, 131958.	7.8	13
12	CuO-Coated Antibacterial and Antiviral Car Air-Conditioning Filters. ACS Applied Materials & Samp; Interfaces, 2022, 14, 24850-24855.	8.0	12
13	Cellulose Nanocrystals (CNC)-Based Functional Materials for Supercapacitor Applications. Nanomaterials, 2022, 12, 1828.	4.1	15
14	Boronâ€doped Carbon Dots with Surface Oxygen Functional Groups as a Highly Sensitive and Labelâ€free Photoluminescence Probe for the Enhanced Detection of Mg ⟨sup⟩2+⟨ sup⟩ Ions. ChemistrySelect, 2022, 7, .	1.5	1
15	Co ₃ O ₄ CoP Core–Shell Nanoparticles with Enhanced Electrocatalytic Water Oxidation Performance. ACS Applied Nano Materials, 2022, 5, 9150-9158.	5.0	2
16	Microspheres of biomolecules/macromolecules for enantioseparation applications. European Polymer Journal, 2021, 142, 110145.	5.4	2
17	In vitro skin toxicity of CuO and ZnO nanoparticles: Application in the safety assessment of antimicrobial coated textiles. NanoImpact, 2021, 21, 100282.	4.5	29
18	High quantum yield boron-doped carbon dots: a ratiometric fluorescent probe for highly selective and sensitive detection of Mg ²⁺ ions. Journal of Materials Chemistry C, 2021, 9, 1632-1640.	5 . 5	47

#	Article	IF	CITATIONS
19	In vitro copper oxide nanoparticle toxicity on intestinal barrier. Journal of Applied Toxicology, 2021, 41, 291-302.	2.8	6
20	Extending the Shelf Life of Strawberries by the Sonochemical Coating of their Surface with Nanoparticles of an Edible Anti-Bacterial Compound. Applied Nano, 2021, 2, 14-24.	2.0	16
21	Sustainable existence of solid mercury (Hg) nanoparticles at room temperature and their applications. Chemical Science, 2021, 12, 3226-3238.	7.4	10
22	Exploring the Effect of Iron Metal-Organic Framework Particles in Polylactic Acid Membranes for the Azeotropic Separation of Organic/Organic Mixtures by Pervaporation. Membranes, 2021, 11, 65.	3.0	34
23	The catalytic production of biofuels (biodiesel and bioethanol) using sonochemical, microwave, and mechanical methods., 2021,, 171-239.		2
24	Making salty cucumbers and honeyed apples by applying the sonochemical method. Journal of Food Science and Technology, 2021, 58, 4263-4269.	2.8	2
25	Green Synthesis of Multifunctional Carbon Dots with Antibacterial Activities. Nanomaterials, 2021, 11, 369.	4.1	69
26	A comprehensive study on the combustion kinetic modeling of typical electronic plastic wasteâ€"television set (TV) plastic shell. Journal of the Air and Waste Management Association, 2021, 71, 701-710.	1.9	4
27	Immobilization of Heteroatom-Doped Carbon Dots onto Nonpolar Plastics for Antifogging, Antioxidant, and Food Monitoring Applications. Langmuir, 2021, 37, 3508-3520.	3.5	78
28	Photocatalytic Degradation of Organic Dyes and Antimicrobial Activities by Polyaniline–Nitrogen-Doped Carbon Dot Nanocomposite. Nanomaterials, 2021, 11, 1128.	4.1	31
29	Biocompatible N-doped carbon dots for the eradication of methicillin-resistant S. aureus (MRSA) and sensitive analysis for europium (III). Nano Structures Nano Objects, 2021, 26, 100724.	3.5	10
30	Novel Lignin-Capped Silver Nanoparticles against Multidrug-Resistant Bacteria. ACS Applied Materials & Samp; Interfaces, 2021, 13, 22098-22109.	8.0	67
31	Antibacterial and In Vivo Studies of a Green, One-Pot Preparation of Copper/Zinc Oxide Nanoparticle-Coated Bandages. Membranes, 2021, 11, 462.	3.0	11
32	Carbon-Dots-Initiated Photopolymerization: An <i>In Situ</i> Synthetic Approach for MXene/Poly(norepinephrine)/Copper Hybrid and its Application for Mitigating Water Pollution. ACS Applied Materials & Diterfaces, 2021, 13, 31038-31050.	8.0	73
33	Engineering of superhydrophobic silica microparticles and thin coatings on polymeric films by ultrasound irradiation. Materials Today Chemistry, 2021, 21, 100520.	3.5	11
34	Sonochemically Prepared BSA Microspheres as Adsorbents for the Removal of Organic Pollutants from Water. Langmuir, 2021, 37, 9927-9938.	3.5	9
35	Facile ultrasonic preparation of a polypyrrole membrane as an absorbent for efficient oil-water separation and as an antimicrobial agent. Ultrasonics Sonochemistry, 2021, 78, 105746.	8.2	10
36	Tailor made magnetic nanolights: fabrication to cancer theranostics applications. Nanoscale Advances, 2021, 3, 6762-6796.	4.6	57

3

#	Article	IF	CITATIONS
37	Sonochemically engineered nano-enabled zinc oxide/amylase coatings prevent the occurrence of catheter-associated urinary tract infections. Materials Science and Engineering C, 2021, 131, 112518.	7.3	14
38	Microbial inhibition and biosensing with multifunctional carbon dots: Progress and perspectives. Biotechnology Advances, 2021, 53, 107843.	11.7	24
39	Effective degradation of cellulose by Microwave irradiation in alkaline solution. Cellulose, 2021, 28, 11275-11285.	4.9	6
40	Photopolymerized Thin Coating of Polypyrrole/Graphene Nanofiber/Iron Oxide onto Nonpolar Plastic for Flexible Electromagnetic Radiation Shielding, Strain Sensing, and Nonâ€Contact Heating Applications. Advanced Materials Interfaces, 2021, 8, 2101255.	3.7	53
41	Designing Natural Polymer-Based Capsules and Spheres for Biomedical Applicationsâ€"A Review. Polymers, 2021, 13, 4307.	4.5	14
42	Sonication-Assisted Synthesis of Bimetallic Hg/Pd Alloy Nanoparticles for Catalytic Reduction of Nitrophenol and its Derivatives. Ultrasonics Sonochemistry, 2020, 60, 104804.	8.2	28
43	Sonochemical preparation of polyaniline@TiO2 and polyaniline@SiO2 for the removal of anionic and cationic dyes. Ultrasonics Sonochemistry, 2020, 62, 104864.	8.2	33
44	Hazard assessment of polymer-capped CuO and ZnO nanocolloids: A contribution to the safe-by-design implementation of biocidal agents. NanoImpact, 2020, 17, 100195.	4.5	19
45	Electrochemical Oxidation of Glycine with Bimetallic Nickelâ^Manganese Oxide Catalysts. ChemElectroChem, 2020, 7, 561-568.	3.4	12
46	Nickel-Rich Phosphide (Ni ₁₂ P ₅) Nanosheets Coupled with Oxidized Multiwalled Carbon Nanotubes for Oxygen Evolution. ACS Applied Nano Materials, 2020, 3, 10914-10921.	5.0	23
47	Antimicrobial Activities of Zn-Doped CuO Microparticles Decorated on Polydopamine against Sensitive and Antibiotic-Resistant Bacteria. ACS Applied Polymer Materials, 2020, 2, 5878-5888.	4.4	38
48	An efficient method to produce 1,4-pentanediol from the biomass of the algae Chlorella ohadi with levulinic acid as intermediate. Bioresource Technology Reports, 2020, 11, 100514.	2.7	8
49	Bifunctional Carbon Dots—Magnetic and Fluorescent Hybrid Nanoparticles for Diagnostic Applications. Nanomaterials, 2020, 10, 1384.	4.1	13
50	Entrapment and release kinetics study of dyes from BSA microspheres forming a matrix and a reservoir system. Journal of Materials Chemistry B, 2020, 8, 10154-10161.	5.8	3
51	Antimicrobial Properties of the Polyaniline Composites against Pseudomonas aeruginosa and Klebsiella pneumoniae. Journal of Functional Biomaterials, 2020, 11, 59.	4.4	14
52	Boosting Electrocatalytic Hydrogen Evolution of Nickel foam Supported Nickel Hydroxide by Ruthenium Doping. ChemistrySelect, 2020, 5, 9626-9634.	1.5	4
53	Carbon Dots for Heavy-Metal Sensing, pH-Sensitive Cargo Delivery, and Antibacterial Applications. ACS Applied Nano Materials, 2020, 3, 11777-11790.	5.0	113
54	Microwave-Synthesized Polysaccharide-Derived Carbon Dots as Therapeutic Cargoes and Toughening Agents for Elastomeric Gels. ACS Applied Materials & Samp; Interfaces, 2020, 12, 51940-51951.	8.0	90

#	Article	IF	CITATIONS
55	Applications of N-Doped Carbon Dots as Antimicrobial Agents, Antibiotic Carriers, and Selective Fluorescent Probes for Nitro Explosives. ACS Applied Bio Materials, 2020, 3, 8023-8031.	4.6	86
56	Antimicrobial Properties of Polyaniline and Polypyrrole Decorated with Zinc-Doped Copper Oxide Microparticles. Polymers, 2020, 12, 1286.	4.5	38
57	Facile Molecular Catalysis for Isomerization of Glucose to Fructose Using KMnO4in Water. ChemistrySelect, 2020, 5, 2913-2917.	1.5	4
58	Cooperative crystallization effect in the formation of sonochemically grafted active materials based on polysaccharides. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110931.	5.0	3
59	Small molecule-decorated gold nanoparticles for preparing antibiofilm fabrics. Nanoscale Advances, 2020, 2, 2293-2302.	4.6	28
60	Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrasonics Sonochemistry, 2020, 64, 105009.	8.2	132
61	Nitrogen-Enriched Porous Benzimidazole-Linked Polymeric Network for the Adsorption of La (III), Ce (III), and Nd (III). Journal of Physical Chemistry C, 2020, 124, 6206-6214.	3.1	13
62	Silica-Supported Nitrogen-Enriched Porous Benzimidazole-Linked and Triazine-Based Polymers for the Adsorption of CO ₂ . Langmuir, 2020, 36, 4280-4288.	3.5	8
63	Antibacterial activities of microwave-assisted synthesized polypyrrole/chitosan and poly (pyrrole-N-(1-naphthyl) ethylenediamine) stimulated by C-dots. Carbohydrate Polymers, 2020, 243, 116474.	10.2	36
64	Ultrasonic assisted synthesis of styrylpyridinium dyes: Optical properties and DFT calculations. Ultrasonics Sonochemistry, 2020, 67, 105182.	8.2	5
65	Sonochemical One-Step Synthesis of Polymer-Capped Metal Oxide Nanocolloids: Antibacterial Activity and Cytotoxicity. ACS Omega, 2019, 4, 13631-13639.	3.5	15
66	A Short Report on the Polymerization of Pyrrole and Its Copolymers by Sonochemical Synthesis of Fluorescent Carbon Dots. Polymers, 2019, 11, 1240.	4.5	21
67	Kinetic, isotherm and mechanism studies of organic dye adsorption on poly(4,4 \hat{a} e²-oxybisbenzenamine) and copolymer of poly(4,4 \hat{a} e²-oxybisbenzenamine-pyrrole) macro-nanoparticles synthesized by multifunctional carbon dots. New Journal of Chemistry, 2019, 43, 1926-1935.	2.8	39
68	In vivo and in vitro study of a novel nanohydroxyapatite sonocoated scaffolds for enhanced bone regeneration. Materials Science and Engineering C, 2019, 99, 669-684.	7.3	49
69	Sonochemically modified ovalbumin enhances enantioenrichment of some amino acids. Ultrasonics Sonochemistry, 2019, 58, 104603.	8.2	7
70	Silver and gold doped hydroxyapatite nanocomposites for enhanced bone regeneration. Biomedical Materials (Bristol), 2019, 14, 055002.	3.3	25
71	Tribological Anti-Wear and Extreme-Pressure Performance of Multifunctional Metal and Nonmetal Doped C-based Nanodots. Lubricants, 2019, 7, 36.	2.9	8
72	Oneâ€Pot Hydrothermal Synthesis of Elements (B, N, P)â€Doped Fluorescent Carbon Dots for Cell Labelling, Differentiation and Outgrowth of Neuronal Cells. ChemistrySelect, 2019, 4, 4222-4232.	1.5	29

#	Article	IF	Citations
73	Antibacterial properties of polypyrrole-treated fabrics by ultrasound deposition. Materials Science and Engineering C, 2019, 102, 164-170.	7.3	50
74	Carbon-Dot Initiated Synthesis of Polypyrrole and Polypyrrole@CuO Micro/Nanoparticles with Enhanced Antibacterial Activity. ACS Applied Polymer Materials, 2019, 1, 1181-1186.	4.4	72
75	Cytotoxic and proinflammatory responses induced by ZnO nanoparticles in in vitro intestinal barrier. Journal of Applied Toxicology, 2019, 39, 1155-1163.	2.8	13
76	Functionalization of WS 2 Nanotubes with Fluorescent Câ€dots and Conductive Polythiophenes. Macromolecular Chemistry and Physics, 2019, 220, 1800476.	2.2	2
77	Hexagonal plate-like Ni–Co–Mn hydroxide nanostructures to achieve high energy density of hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 11362-11369.	10.3	110
78	Selective production of furfural from the dehydration of xylose using Zn doped CuO catalyst. Ultrasonics Sonochemistry, 2019, 56, 55-62.	8.2	30
79	AS101-Loaded PLGA–PEG Nanoparticles for Autoimmune Regulation and Chemosensitization. ACS Applied Bio Materials, 2019, 2, 2246-2251.	4.6	3
80	Zinc-Doped Copper Oxide Nanocomposites Inhibit the Growth of Pancreatic Cancer by Inducing Autophagy Through AMPK/mTOR Pathway. Frontiers in Pharmacology, 2019, 10, 319.	3.5	16
81	Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus of Colloidal Polydopamine Prepared by Carbon Dot Stimulated Polymerization of Dopamine. Nanomaterials, 2019, 9, 1731.	4.1	36
82	Zn-doped CuO nanocomposites inhibit tumor growth by NF- \hat{l}° B pathway cross-linked autophagy and apoptosis. Nanomedicine, 2019, 14, 131-149.	3.3	12
83	Fluorescent metal-doped carbon dots for neuronal manipulations. Ultrasonics Sonochemistry, 2019, 52, 205-213.	8.2	70
84	The sonochemical functionalization of textiles. , 2019, , 161-198.		8
85	Ultrafine Ruthenium Oxide Nanoparticles Supported on Molybdenum Oxide Nanosheets as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Medium. ChemCatChem, 2019, 11, 1495-1502.	3.7	22
86	Antibacterial and physical properties of a novel sonochemical-assisted Zn-CuO contact lens nanocoating. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019, 257, 95-100.	1.9	11
87	Element (B, N, P) doped carbon dots interaction with neural cells: promising results and future prospective. , 2019 , , .		11
88	Imparting Pharmaceutical Applications to the Surface of Fabrics for Wound and Skin Care by Ultrasonic Waves. Current Medicinal Chemistry, 2019, 25, 5739-5754.	2.4	6
89	Znâ€doped CuO nanocomposites inhibit tumor growth in vitro and in vivo : Involvement of reactive oxygen speciesâ€dependent autophagy and apoptosis crossâ€linked by NFâ€kappaB pathway. FASEB Journal, 2019, 33, 811.7.	0.5	0
90	Ultrafine Highly Magnetic Fluorescent Î ³ -Fe ₂ O ₃ /NCD Nanocomposites for Neuronal Manipulations. ACS Omega, 2018, 3, 1897-1903.	3.5	22

#	Article	IF	Citations
91	A facile method for the deposition of volatile natural compound-based nanoparticles on biodegradable polymer surfaces. Journal of Materials Chemistry B, 2018, 6, 2240-2249.	5.8	10
92	Antiparasitic Ointment Based on a Biocompatibile Carbon Dot Nanocomposite. ACS Applied Nano Materials, 2018, 1, 1784-1791.	5.0	19
93	Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive. Carbohydrate Polymers, 2018, 189, 198-203.	10.2	89
94	Type-I superconductivity in carbon-coated Sn nano-spheres. Physica C: Superconductivity and Its Applications, 2018, 546, 6-10.	1.2	6
95	Imparting superhydrophobic and biocidal functionalities to a polymeric substrate by the sonochemical method. Ultrasonics Sonochemistry, 2018, 44, 398-403.	8.2	10
96	One-pot Sonochemical Synthesis of Hg–Ag Alloy Microspheres from Liquid Mercury. Ultrasonics Sonochemistry, 2018, 40, 157-165.	8.2	14
97	Proteinaceous microspheres as a delivery system for carvacrol and thymol in antibacterial applications. Ultrasonics Sonochemistry, 2018, 41, 288-296.	8.2	32
98	Continuous Waste Cooking Oil Transesterification with Microwave Heating and Strontium Oxide Catalyst. Chemical Engineering and Technology, 2018, 41, 192-198.	1.5	11
99	Novel polymerization of aniline and pyrrole by carbon dots. New Journal of Chemistry, 2018, 42, 535-540.	2.8	47
100	Fabrication of poly (4,4′-oxybisbenzenamine) and its conjugated copolymers initiated by easily accessible carbon dots. European Polymer Journal, 2018, 109, 153-161.	5.4	17
101	Ecoâ€Friendly and Facile Preparation of Spherical Chitin Nanoparticles. ChemistrySelect, 2018, 3, 10787-10791.	1.5	4
102	Formation of metallic silver and copper in non-aqueous media by ultrasonic radiation. Ultrasonics Sonochemistry, 2018, 47, 108-113.	8.2	9
103	Accelerated Bone Regeneration by Nitrogen-Doped Carbon Dots Functionalized with Hydroxyapatite Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19373-19385.	8.0	89
104	Kinetics, Isotherm, and Thermodynamic Studies of Methylene Blue Adsorption on Polyaniline and Polypyrrole Macroâ€"Nanoparticles Synthesized by C-Dot-Initiated Polymerization. ACS Omega, 2018, 3, 7196-7203.	3.5	94
105	Zinc-doped copper oxide nanocomposites reverse temozolomide resistance in glioblastoma by inhibiting AKT and ERK1/2. Nanomedicine, 2018, 13, 1303-1318.	3.3	19
106	The Sonochemical Coating ofÂTextiles With Antibacterial Nanoparticles. , 2018, , 235-255.		6
107	Carbon Dot Initiated Synthesis of Poly(4,4′-diaminodiphenylmethane) and Its Methylene Blue Adsorption. ACS Omega, 2018, 3, 7061-7068.	3.5	35
108	Green synthesis of MoS ₂ nanoflowers for efficient degradation of methylene blue and crystal violet dyes under natural sun light conditions. New Journal of Chemistry, 2018, 42, 14318-14324.	2.8	65

#	Article	IF	CITATIONS
109	Enantioselective Separation of Racemic Tryptophan with Sonochemically Prepared Egg Albumin Microspheres. ChemistrySelect, 2018, 3, 4004-4008.	1.5	6
110	Surfactant Effect on the Thermal and Electrical Behaviors of Sonochemically Synthesized Fe and Fe–PVP Nanofluids and Insight into the Magnetism of Their in Situ Oxidized α-Fe ₂ O ₃ Analogues. Journal of Physical Chemistry C, 2018, 122, 20755-20762.	3.1	8
111	Sonochemically-fabricated Ga@C-dots@Ga nanoparticle-aided neural growth. Journal of Materials Chemistry B, 2017, 5, 1371-1379.	5.8	37
112	Nitrogen-doped carbon dots prepared from bovine serum albumin to enhance algal astaxanthin production. Algal Research, 2017, 23, 161-165.	4.6	39
113	Graphene-Based "Hot Plate―for the Capture and Destruction of the Herpes Simplex Virus Type 1. Bioconjugate Chemistry, 2017, 28, 1115-1122.	3.6	85
114	The interaction between molten gallium and the hydrocarbon medium induced by ultrasonic energyâ€"can gallium carbide be formed?. Journal of the American Ceramic Society, 2017, 100, 3305-3315.	3.8	10
115	Fluorescent Nanoparticles with Tissue-Dependent Affinity for Live Zebrafish Imaging. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18557-18565.	8.0	39
116	Solar-Heated Sustainable Biodiesel Production from Waste Cooking Oil Using a Sonochemically Deposited SrO Catalyst on Microporous Activated Carbon. Energy & Samp; Fuels, 2017, 31, 6228-6239.	5.1	42
117	One-step surface grafting of organic nanoparticles: in situ deposition of antimicrobial agents vanillin and chitosan on polyethylene packaging films. Journal of Materials Chemistry B, 2017, 5, 2655-2661.	5.8	21
118	Stiffening of Metallic Gallium Particles by Entrapment of Organic Molecules. Crystal Growth and Design, 2017, 17, 2041-2045.	3.0	5
119	Hybrid Chitosan–Silver Nanoparticles Enzymatically Embedded on Cork Filter Material for Water Disinfection. Industrial & Disinfection. Industrial & Disinfection. Industrial & Disinfection. Industrial & Disinfection.	3.7	22
120	Achievement and assessment of direct electron transfer of glucose oxidase in electrochemical biosensing using carbon nanotubes, graphene, and their nanocomposites. Mikrochimica Acta, 2017, 184, 369-388.	5.0	98
121	Catheters coated with Zn-doped CuO nanoparticles delay the onset of catheter-associated urinary tract infections. Nano Research, 2017, 10, 520-533.	10.4	59
122	A New Approach to Chiral Enrichment by Exposure of Racemates of Amino Acids to Sonochemicallyâ€Prepared BSA Microspheres. ChemistrySelect, 2017, 2, 8234-8238.	1.5	6
123	Solar-energy-driven conversion of biomass to bioethanol: a sustainable approach. Journal of Materials Chemistry A, 2017, 5, 15486-15506.	10.3	20
124	Airborne Nanoparticle Release and Toxicological Risk from Metal-Oxide-Coated Textiles: Toward a Multiscale Safe-by-Design Approach. Environmental Science & Environmental Science & 2017, 51, 9305-9317.	10.0	33
125	Solarâ€Lightâ€Driven Photocatalytic Activity of Novel Sn@Câ€Dotsâ€Modified TiO ₂ Catalyst. ChemistrySelect, 2017, 2, 6683-6688.	1.5	20
126	Refractive-Index Tuning of Highly Fluorescent Carbon Dots. ACS Applied Materials & Samp; Interfaces, 2017, 9, 28930-28938.	8.0	51

#	Article	IF	Citations
127	Topographical impact of silver nanolines on the morphology of neuronal SH-SY5Y Cells. Journal of Materials Chemistry B, 2017, 5, 9346-9353.	5.8	12
128	Doping Effect on the Thermal Conductivity of Metal Oxide Nanofluids: Insight and Mechanistic Investigation. Journal of Physical Chemistry C, 2017, 121, 26551-26557.	3.1	11
129	Nonaqueous synthesis of SrO nanopowder and SrO/SiO2 composite and their application for biodiesel production via microwave irradiation. Renewable Energy, 2017, 101, 493-499.	8.9	40
130	Detection of human neutrophil elastase (HNE) on wound dressings as marker of inflammation. Applied Microbiology and Biotechnology, 2017, 101, 1443-1454.	3.6	27
131	Continuous flow through a microwave oven for the large-scale production of biodiesel from waste cooking oil. Bioresource Technology, 2017, 224, 333-341.	9.6	79
132	Sonochemical fabrication of edible fragrant antimicrobial nano coating on textiles and polypropylene cups. Ultrasonics Sonochemistry, 2017, 38, 614-621.	8.2	12
133	A New Approach to the Synthesis of Transition Metal Phosphide Nanocrystallites (MoP, MoP2, Cu3P) Tj ETQq1 1 International Journal of Nanoscience, 2017, 16, 1650030.	0.784314 0.7	rgBT /Over
134	RAPET (Reaction under Autogenic Pressure at Elevated Temperatures) Technique Assisted Synthesis of Encapsulated CdE@C [E= S, Se and Te] Nanocrystallites. International Journal of Nanoscience, 2017, 16, 1650032.	0.7	0
135	Ga@C-dots as an antibacterial agent for the eradication of Pseudomonas aeruginosa . International Journal of Nanomedicine, 2017, Volume 12, 725-730.	6.7	29
136	DNA Microspheres Coated with Bioavailable Polymer as an Efficient Gene Expression Agent in Yeasts. Journal of Nanomaterials, 2016, 2016, 1-8.	2.7	4
137	Making the hospital a safer place by the sonochemical coating of textiles by antibacterial nanoparticles., 2016,, 71-105.		4
138	Sonochemical co-deposition of antibacterial nanoparticles and dyes on textiles. Beilstein Journal of Nanotechnology, 2016, 7, 1-8.	2.8	29
139	In situ sonochemical synthesis of luminescent Sn@C-dots and a hybrid Sn@C-dots@Sn anode for lithium-ion batteries. RSC Advances, 2016, 6, 66256-66265.	3.6	30
140	Fabrication of a Stable and Efficient Antibacterial Nanocoating of Znâ€CuO on Contact Lenses. ChemNanoMat, 2016, 2, 547-551.	2.8	20
141	Production of 1,3-propanediol from glycerol via fermentation by Saccharomyces cerevisiae. Green Chemistry, 2016, 18, 4657-4666.	9.0	39
142	A green and low-cost room temperature biodiesel production method from waste oil using egg shells as catalyst. Fuel, 2016, 182, 34-41.	6.4	132
143	Hydrophobic coating of GaAs surfaces with nanostructured ZnO. Materials Letters, 2016, 175, 101-105.	2.6	13
144	Bioethanol production from Ficus religiosa leaves using microwave irradiation. Journal of Environmental Management, 2016, 177, 20-25.	7.8	21

#	Article	IF	CITATIONS
145	SiO ₂ Beads Decorated with SrO Nanoparticles for Biodiesel Production from Waste Cooking Oil Using Microwave Irradiation. Energy & Samp; Fuels, 2016, 30, 3151-3160.	5.1	51
146	In vitro studies of polyethyleneimine coated miRNA microspheres as anticancer agents. Nano Research, 2016, 9, 1609-1617.	10.4	5
147	Exceptionally Active and Stable Spinel Nickel Manganese Oxide Electrocatalysts for Urea Oxidation Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12176-12185.	8.0	130
148	Preparation and Catalytic Activity of Thermosensitive Ga ₂ O ₃ Nanorods. Energy & Damp; Fuels, 2016, 30, 7419-7427.	5.1	20
149	Ultrasonic Coating of Textiles by Antibacterial and Antibiofilm Nanoparticles. , 2016, , 967-993.		8
150	A topical antibacterial ointment made of Zn-doped copper oxide nanocomposite. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	13
151	Cu _{0.89} Zn _{0.11} O, A New Peroxidase-Mimicking Nanozyme with High Sensitivity for Glucose and Antioxidant Detection. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22301-22308.	8.0	190
152	Effect of different densities of silver nanoparticles on neuronal growth. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	16
153	<i>In-Situ</i> Transesterification of <i>Chlorella vulgaris</i> Using Carbon-Dot Functionalized Strontium Oxide as a Heterogeneous Catalyst under Microwave Irradiation. Energy & Energy & 2016, 30, 10602-10610.	5.1	35
154	Surfactant-free synthesis of a water-soluble PEGylated nanographeneoxide/metal-oxide nanocomposite as engineered antimicrobial weaponry. Journal of Materials Chemistry B, 2016, 4, 6706-6715.	5.8	4
155	Development of Ga Salt of Molybdophosphoric Acid for Biomass Conversion to Levulinic Acid. Energy & Levulinic Acid. Energ	5.1	30
156	Ga Modified Zeolite Based Solid Acid Catalyst for Levulinic Acid Production. ChemistrySelect, 2016, 1, 5952-5960.	1.5	13
157	Zinc-Doped Copper Oxide Nanocomposites Inhibit the Growth of Human Cancer Cells through Reactive Oxygen Species-Mediated NF-κB Activations. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31806-31812.	8.0	36
158	Activated Carbon Modified with Carbon Nanodots as Novel Electrode Material for Supercapacitors. Journal of Physical Chemistry C, 2016, 120, 13406-13413.	3.1	72
159	On the nature of the nanospikes obtained in the sonication of a molten mixture of bismuth and indium under silicone oil. Journal of Alloys and Compounds, 2016, 672, 476-480.	5.5	4
160	Escherichia coli and Pseudomonas aeruginosa eradication by nano-penicillin G. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2061-2069.	3.3	24
161	Two are Better than One: Combining ZnO and MgF ₂ Nanoparticles Reduces <i>Streptococcus pneumoniae</i> and <i>Staphylococcus aureus</i> Biofilm Formation on Cochlear Implants. Advanced Functional Materials, 2016, 26, 2473-2481.	14.9	36
162	Effects of the 3D sizing of polyacrylonitrile fabric with carbon nanotube–SP1 protein complex on the interfacial properties of polyacrylonitrile/phenolic composites. Journal of Composite Materials, 2016, 50, 1031-1036.	2.4	5

#	Article	IF	Citations
163	Glucose production from potato peel waste under microwave irradiation. Journal of Molecular Catalysis A, 2016, 417, 163-167.	4.8	22
164	Effect of sonochemistry: Li- and Mn-rich layered high specific capacity cathode materials for Li-ion batteries. Journal of Solid State Electrochemistry, 2016, 20, 1683-1695.	2.5	4
165	A hydrothermal reaction of an aqueous solution of BSA yields highly fluorescent N doped C-dots used for imaging of live mammalian cells. Journal of Materials Chemistry B, 2016, 4, 2913-2920.	5.8	45
166	Dispersion of Polymers in Metallic Gallium. ChemPhysChem, 2016, 17, 162-169.	2.1	3
167	Facile sonochemical preparation and magnetic properties of strontium hexaferrite (SrFe12O19) nanoparticles. Journal of Materials Science: Materials in Electronics, 2016, 27, 5707-5714.	2.2	19
168	In situ formation of carbon dots aids ampicillin sensing. Analytical Methods, 2016, 8, 2441-2447.	2.7	19
169	Sonochemical synthesis of CH3NH3Pbl3 perovskite ultrafine nanocrystal sensitizers for solar energy applications. Ultrasonics Sonochemistry, 2016, 32, 54-59.	8.2	47
170	Sonochemical Formation of Ga-Pt Intermetallic Nanoparticles Embedded in Graphene and its Potential Use as an Electrocatalyst. Electrochimica Acta, 2016, 190, 659-667.	5.2	34
171	Synthesis of WS2 and WSe2 nanowires on stainless steel coupon by reaction under autogenic pressure at elevated temperature method. Applied Nanoscience (Switzerland), 2016, 6, 855-862.	3.1	7
172	Utilization of solar energy for continuous bioethanol production for energy applications. RSC Advances, 2016, 6, 24203-24209.	3.6	15
173	A one-step sonochemical synthesis of stable ZnO–PVA nanocolloid as a potential biocidal agent. Journal of Materials Chemistry B, 2016, 4, 2124-2132.	5.8	56
174	Evaluation of the Potential of <i>Chlorella vulgaris</i> for Bioethanol Production. Energy &	5.1	26
175	Highly efficient silver particle layers on glass substrate synthesized by the sonochemical method for surface enhanced Raman spectroscopy purposes. Ultrasonics Sonochemistry, 2016, 32, 165-172.	8.2	11
176	Design of a selective solid acid catalyst for the optimization of glucose production from Oryza sativa straw. RSC Advances, 2016, 6, 31-38.	3.6	14
177	Nanotechnology solutions to restore antibiotic activity. Journal of Materials Chemistry B, 2016, 4, 824-833.	5.8	45
178	Can r-graphene oxide replace the noble metals in SERS studies: the detection of acrylamide. Environmental Chemistry, 2016, 13, 58.	1.5	5
179	Facile one-step sonochemical synthesis of ultrafine and stable fluorescent C-dots. Ultrasonics Sonochemistry, 2016, 28, 367-375.	8.2	68
180	Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles. Ultrasonics Sonochemistry, 2016, 29, 244-250.	8.2	111

#	Article	IF	Citations
181	Solarâ€Energy Driven Simultaneous Saccharification and Fermentation of Starch to Bioethanol for Fuelâ€Cell Applications. ChemSusChem, 2015, 8, 3497-3503.	6.8	8
182	Enhanced pharmacological activity of Vitamin B12 and Penicillin as nanoparticles. International Journal of Nanomedicine, 2015, 10, 3593.	6.7	26
183	Single step production of bioethanol from the seaweed Ulva rigida using sonication. RSC Advances, 2015, 5, 16223-16229.	3.6	78
184	New Life for an Old Antibiotic. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7324-7333.	8.0	21
185	Ruthenium Phosphide Synthesis and Electroactivity toward Oxygen Reduction in Acid Solutions. ACS Catalysis, 2015, 5, 4260-4267.	11.2	46
186	Sonochemical synthesis of LiNi0.5Mn1.5O4 and its electrochemical performance as a cathode material for 5 V Li-ion batteries. Ultrasonics Sonochemistry, 2015, 26, 332-339.	8.2	23
187	Ultrasonic Coating of Textiles by Antibacterial and Antibiofilm Nanoparticles. , 2015, , 1-27.		1
188	Sonochemically synthesized Ag nanoparticles as a SERS active substrate and effect of surfactant. Applied Surface Science, 2015, 331, 219-224.	6.1	9
189	DSC measurements of the thermal properties of gallium particles in the micron and sub-micron sizes, obtained by sonication of molten gallium. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1587-1592.	3.6	33
190	Selective conversion of starch to glucose using carbon based solid acid catalyst. Renewable Energy, 2015, 78, 141-145.	8.9	33
191	Making the hospital a safer place by sonochemical coating of all its textiles with antibacterial nanoparticles. Ultrasonics Sonochemistry, 2015, 25, 82-88.	8.2	53
192	Protein Microgels from Amyloid Fibril Networks. ACS Nano, 2015, 9, 43-51.	14.6	121
193	Tetracycline Nanoparticles as Antibacterial and Geneâ€6ilencing Agents. Advanced Healthcare Materials, 2015, 4, 723-728.	7.6	21
194	Heteropoly acid catalyzed hydrolysis of glycogen to glucose. Biomass and Bioenergy, 2015, 76, 61-68.	5.7	16
195	Marine integrated culture of carbohydrate rich Ulva rigida for enhanced production of bioethanol. RSC Advances, 2015, 5, 59251-59256.	3.6	29
196	Ultrasound coating of polydimethylsiloxanes with antimicrobial enzymes. Journal of Materials Chemistry B, 2015, 3, 7014-7019.	5.8	26
197	Chiral imprinting in molten gallium. New Journal of Chemistry, 2015, 39, 2690-2696.	2.8	20
198	Synergistic catalytic effect of the ZnBr ₂ â€"HCl system for levulinic acid production using microwave irradiation. RSC Advances, 2015, 5, 11043-11048.	3.6	19

#	Article	IF	Citations
199	Facile synthesis of gallium oxide hydroxide by ultrasonic irradiation of molten gallium in water. Ultrasonics Sonochemistry, 2015, 26, 340-344.	8.2	47
200	Reduction of metallic ions by molten gallium under ultrasonic irradiation and interactions between the formed metals and the gallium. Journal of Alloys and Compounds, 2015, 637, 538-544.	5.5	13
201	Thermal and structural characterization of ultrasonicated BiSn alloy in the eutectic composition. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1543-1551.	3.6	6
202	Toxicity Evaluation of a New Zn-Doped CuO Nanocomposite With Highly Effective Antibacterial Properties. Toxicological Sciences, 2015, 146, 16-30.	3.1	28
203	Sonochemical synthesis of HSiW/graphene catalysts for enhanced biomass hydrolysis. Green Chemistry, 2015, 17, 2418-2425.	9.0	27
204	Employing Novel Techniques (Microwave and Sonochemistry) in the Synthesis of Biodiesel and Bioethanol. Biofuels and Biorefineries, 2015, , 159-185.	0.5	5
205	Formation of particles of bismuth-based binary alloys and intermetallic compounds by ultrasonic cavitation. New Journal of Chemistry, 2015, 39, 5374-5381.	2.8	24
206	The sonochemical synthesis of Ga@C-dots particles. RSC Advances, 2015, 5, 25533-25540.	3.6	48
207	Assessment of holocellulose for the production of bioethanol by conserving Pinus radiata cones as renewable feedstock. Journal of Environmental Management, 2015, 162, 215-220.	7.8	16
208	NMR studies of DNA microcapsules prepared using sonochemical methods. Physical Chemistry Chemical Physics, 2015, 17, 2235-2240.	2.8	2
209	Antibiotic nanoparticles embedded into the Parylene C layer as a new method to prevent medical device-associated infections. Journal of Materials Chemistry B, 2015, 3, 59-64.	5.8	24
210	Power ultrasound for the production of nanomaterials. , 2015, , 543-576.		10
211	The influence of the crystalline nature of nano-metal oxides on their antibacterial and toxicity properties. Nano Research, 2015, 8, 695-707.	10.4	100
212	A novel sonochemical synthesis of antlerite nanorods. Ultrasonics Sonochemistry, 2015, 22, 30-34.	8.2	3
213	Substrates coated with silver nanoparticles as a neuronal regenerative material. International Journal of Nanomedicine, 2014, 9 Suppl 1, 23.	6.7	20
214	Optimizing algal lipid production and its efficient conversion to biodiesel. Biofuels, 2014, 5, 405-413.	2.4	5
215	Carbon nanoparticles based non-enzymatic glucose sensor. International Journal of Environmental Analytical Chemistry, 2014, 94, 28-35.	3.3	7
216	A Znâ€Doped CuO Nanocomposite Shows Enhanced Antibiofilm and Antibacterial Activities Against ⟨i⟩ Streptococcus Mutans⟨ i⟩ Compared to Nanosized CuO. Advanced Functional Materials, 2014, 24, 1382-1390.	14.9	83

#	Article	IF	Citations
217	Sonochemical synthesis, structural, magnetic and grain size dependent electrical properties of NdVO4 nanoparticles. Ultrasonics Sonochemistry, 2014, 21, 599-605.	8.2	36
218	One-step sonochemical preparation of redox-responsive nanocapsules for glutathione mediated RNA release. Journal of Materials Chemistry B, 2014, 2, 6020-6029.	5.8	19
219	Pre-miRNA expressing plasmid delivery for anti-cancer therapy. MedChemComm, 2014, 5, 459-462.	3.4	3
220	Ultrasonic cavitation of molten gallium in water: entrapment of organic molecules in gallium microspheres. Journal of Materials Chemistry A, 2014, 2, 1309-1317.	10.3	38
221	Sonochemically-induced spectral shift as a probe of green fluorescent protein release from nano capsules. RSC Advances, 2014, 4, 10303-10309.	3.6	2
222	Facile synthesis of self-assembled spherical and mesoporous dandelion capsules of ZnO: efficient carrier for DNA and anti-cancer drugs. Journal of Materials Chemistry B, 2014, 2, 3956-3964.	5.8	40
223	The sonochemical approach improves the CuO–ZnO/TiO ₂ catalyst for WGS reaction. Physical Chemistry Chemical Physics, 2014, 16, 7521-7530.	2.8	19
224	Levulinic acid production from Cicer arietinum, cotton, Pinus radiata and sugarcane bagasse. RSC Advances, 2014, 4, 44706-44711.	3.6	43
225	Selective chemical reduction of carbon dioxide to formate using microwave irradiation. Journal of CO2 Utilization, 2014, 7, 19-22.	6.8	22
226	Nanocrystalline Iron Oxides, Composites, and Related Materials as a Platform for Electrochemical, Magnetic, and Chemical Biosensors. Chemistry of Materials, 2014, 26, 6653-6673.	6.7	140
227	Enhanced activity of immobilized pepsin nanoparticles coated on solid substrates compared to free pepsin. Enzyme and Microbial Technology, 2014, 67, 67-76.	3.2	17
228	Herpes Simplex Virus Type-1 Attachment Inhibition by Functionalized Graphene Oxide. ACS Applied Materials & Samp; Interfaces, 2014, 6, 1228-1235.	8.0	144
229	Forming Nanospherical Cellulose Containers. Industrial & Engineering Chemistry Research, 2014, 53, 13871-13880.	3.7	16
230	Ultrasonic cavitation of molten gallium: Formation of micro- and nano-spheres. Ultrasonics Sonochemistry, 2014, 21, 1166-1173.	8.2	69
231	Tannic acid NPs – Synthesis and immobilization onto a solid surface in a one-step process and their antibacterial and anti-inflammatory properties. Ultrasonics Sonochemistry, 2014, 21, 1916-1920.	8.2	52
232	Sonochemical Coating of Textiles with Hybrid ZnO/Chitosan Antimicrobial Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2014, 6, 1164-1172.	8.0	194
233	Can cellulose be a sustainable feedstock for bioethanol production?. Renewable Energy, 2014, 71, 77-80.	8.9	41
234	An ultrasonic technology for production of antibacterial nanomaterials and their coating on textiles. Beilstein Journal of Nanotechnology, 2014, 5, 532-536.	2.8	18

#	Article	IF	Citations
235	The Immobilization of Polyethylene Imine Nano and Microspheres on Glass Using High Intensity Ultrasound. International Journal of Applied Ceramic Technology, 2013, 10, E267.	2.1	1
236	MgF2 nanoparticle-coated teeth inhibit Streptococcus mutans biofilm formation on a tooth model. Journal of Materials Chemistry B, 2013, 1, 3985.	5.8	18
237	Using Microwave Radiation and SrO as a Catalyst for the Complete Conversion of Oils, Cooked Oils, and Microalgae to Biodiesel., 2013,, 209-227.		8
238	Triangular Core–Shell ZnO@SiO ₂ Nanoparticles. ChemPhysChem, 2013, 14, 3215-3220.	2.1	9
239	Fabrication, Characterization, and Printing of Conductive Ink Based on Multi Core–Shell Nanoparticles Synthesized by RAPET. Advanced Functional Materials, 2013, 23, 5794-5799.	14.9	17
240	Synthesis of mesoporous SiO2–ZnO nanocapsules: encapsulation of small biomolecules for drugs and "SiOZO-plex―for gene delivery. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	22
241	Preparation of Ge@Organosilicon Core–Shell Structures and Characterization by Solid State NMR and Other Techniques. Journal of Physical Chemistry C, 2013, 117, 11086-11094.	3.1	3
242	Eradication of Multiâ€Drug Resistant Bacteria by a Novel Znâ€doped CuO Nanocomposite. Small, 2013, 9, 4069-4076.	10.0	177
243	Proteinaceous microspheres for targeted RNA delivery prepared by an ultrasonic emulsification method. Journal of Materials Chemistry B, 2013, 1, 82-90.	5.8	16
244	Antibody modified Bovine Serum Albumin microspheres for targeted delivery of anticancer agent Gemcitabine. Polymers for Advanced Technologies, 2013, 24, 294-299.	3.2	11
245	Visible light-induced OH radicals in Ga2O3: an EPR study. Physical Chemistry Chemical Physics, 2013, 15, 12977.	2.8	10
246	More on sonolytic and sonocatalytic decomposition of Diclofenac using zero-valent iron. Ultrasonics Sonochemistry, 2013, 20, 580-586.	8.2	48
247	Preparation of enzyme nanoparticles and studying the catalytic activity of the immobilized nanoparticles on polyethylene films. Ultrasonics Sonochemistry, 2013, 20, 425-431.	8.2	31
248	Micro- and nano-spheres of low melting point metals and alloys, formed by ultrasonic cavitation. Ultrasonics Sonochemistry, 2013, 20, 432-444.	8.2	50
249	Encapsulating bioactive materials in sonochemically produced micro- and nano-spheres. Journal of Materials Chemistry B, 2013, 1, 595-605.	5.8	15
250	Biocidal properties of TiO2 powder modified with Ag nanoparticles. Journal of Materials Chemistry B, 2013, 1, 5309.	5.8	58
251	A sonochemical technology for coating of textiles with antibacterial nanoparticles and equipment for itsimplementation. Materials Letters, 2013, 96, 121-124.	2.6	64
252	Silver Nanoparticles Promote Neuronal Growth. Procedia Engineering, 2013, 59, 25-29.	1.2	13

#	Article	IF	CITATIONS
253	Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity. Journal of Materials Chemistry B, 2013, 1, 1968.	5.8	187
254	Visible Light-Induced Antibacterial Activity of Metaloxide Nanoparticles. Photomedicine and Laser Surgery, 2013, 31, 526-530.	2.0	25
255	Fabrication of (La1 \hat{a} 'x Gd x)2/3Sr1/3MnO3 Manganite Perovskite Nanorods by Sonication-Assisted Coprecipation. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1385-1390.	1.8	4
256	The sonochemical coating of cotton withstands 65 washing cycles at hospital washing standards and retains its antibacterial properties. Cellulose, 2013, 20, 1215-1221.	4.9	67
257	Forming nanoparticles of α-amylase and embedding them into solid surfaces. Journal of Molecular Catalysis B: Enzymatic, 2013, 90, 43-48.	1.8	3
258	The Sonochemical Fabrication of RNA and DNA Nanospheres. , 2013, , 373-394.		0
259	Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. International Journal of Nanomedicine, 2012, 7, 1175.	6.7	86
260	Nanometer size effects on magnetic order in La1â^'xCaxMnO3 (xâ \in %=â \in %0.5 and 0.6) manganites, probed by ferromagnetic resonance. Journal of Applied Physics, 2012, 111, 07D701.	2.5	7
261	The use of visible light and metal oxide nano particles for pathogen inactivation. , 2012, , .		2
262	Sonochemical Coatings of ZnO and CuO Nanoparticles Inhibit Streptococcus mutans Biofilm Formation on Teeth Model. Langmuir, 2012, 28, 12288-12295.	3.5	124
263	Synthesis of Ni3S2 and NiSe nanoparticles encapsulated in carbon shell and coating these onto stainless steel surfaces by RAPET. RSC Advances, 2012, 2, 11725.	3.6	8
264	Surface-modified protein nanospheres as potential antiviral agents. Chemical Communications, 2012, 48, 8359.	4.1	16
265	Optimization of bio-diesel production from oils, cooking oils, microalgae, and castor and jatropha seeds: probing various heating sources and catalysts. Energy and Environmental Science, 2012, 5, 7460.	30.8	40
266	Insights on the Mechanism of Formation of Protein Microspheres in a Biphasic System. Molecular Pharmaceutics, 2012, 9, 3079-3088.	4.6	40
267	Mild Sonication Accelerates Ethanol Production by Yeast Fermentation. Energy & Energ	5.1	23
268	Depositing nanoparticles inside millimeter-size hollow tubing. Applied Surface Science, 2012, 258, 2368-2372.	6.1	10
269	Biodegradability study and pH influence on growth and orientation of ZnO nanorods via aqueous solution process. Applied Surface Science, 2012, 258, 6765-6771.	6.1	54
270	Synthesis of amino acid block-copolymer imprinted chiral mesoporous silica and its acoustically-induced optical Kerr effects. Journal of Solid State Chemistry, 2012, 192, 127-131.	2.9	13

#	Article	IF	Citations
271	Improved antibacterial and antibiofilm activity of magnesium fluoride nanoparticles obtained by water-based ultrasound chemistry. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 702-711.	3.3	74
272	Direct production of glucose from glycogen under microwave irradiation. RSC Advances, 2012, 2, 7262.	3.6	18
273	Understanding the Antibacterial Mechanism of CuO Nanoparticles: Revealing the Route of Induced Oxidative Stress. Small, 2012, 8, 3326-3337.	10.0	448
274	Enzymatic pre-treatment as a means of enhancing the antibacterial activity and stability of ZnO nanoparticles sonochemically coated on cotton fabrics. Journal of Materials Chemistry, 2012, 22, 10736.	6.7	43
275	ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Advances, 2012, 2, 2314.	3.6	184
276	Releasing Dye Encapsulated in Proteinaceous Microspheres on Conductive Fabrics by Electric Current. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2926-2930.	8.0	12
277	Synthesis of metal–carbon core–shell nanoparticles by RAPET (Reaction under Autogenic Pressure at) Tj ETÇ)q1_1,0.78 2.8	4314 rgBT /
278	Graphene oxide microspheres prepared by a simple, one-step ultrasonication method. New Journal of Chemistry, 2012, 36, 36-39.	2.8	8
279	Air stable core–shell multilayer metallic nanoparticles synthesized by RAPET: fabrication, characterization and suggested applications. Journal of Materials Chemistry, 2012, 22, 15025.	6.7	15
280	Direct Transesterification of Castor and Jatropha Seeds for FAME Production by Microwave and Ultrasound Radiation Using a SrO Catalyst. Bioenergy Research, 2012, 5, 958-968.	3.9	28
281	Forming nanoparticles of water-soluble ionic molecules and embedding them into polymer and glass substrates. Beilstein Journal of Nanotechnology, 2012, 3, 267-276.	2.8	41
282	Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. International Journal of Nanomedicine, 2012, 7, 5611.	6.7	49
283	Sonochemical coating of textile fabrics with antibacterial nanoparticles. AIP Conference Proceedings, 2012, , .	0.4	5
284	A Oneâ€Step Process for the Antimicrobial Finishing of Textiles with Crystalline TiO ₂ Nanoparticles. Chemistry - A European Journal, 2012, 18, 4575-4582.	3.3	92
285	The Different Behavior of Rutile and Anatase Nanoparticles in Forming Oxy Radicals Upon Illumination with Visible Light: An EPR Study. Photochemistry and Photobiology, 2012, 88, 14-20.	2.5	60
286	Fragrance release profile from sonochemically prepared protein microsphere containers. Ultrasonics Sonochemistry, 2012, 19, 858-863.	8.2	34
287	Sonochemical Coating of Cotton and Polyester Fabrics with "Antibacterial―BSA and Casein Spheres. Chemistry - A European Journal, 2012, 18, 365-369.	3.3	29
288	Supported Ru catalysts prepared by two sonication-assisted methods for preferential oxidation of CO in H2. Physical Chemistry Chemical Physics, 2011, 13, 15690.	2.8	29

#	Article	IF	Citations
289	A facile one-pot sonochemical synthesis of surface-coated mannosyl protein microspheres for detection and killing of bacteria. Chemical Communications, 2011, 47, 12277.	4.1	18
290	Chemical reactions under autogenic pressure at elevated temperature to fabricate photo-luminescent Ga2O3 nanocrystals and their coatings. RSC Advances, 2011, 1, 619.	3.6	6
291	Synthesis of Air Stable FeCo/C Alloy Nanoparticles by Decomposing a Mixture of the Corresponding Metal-Acetyl Acetonates under Their Autogenic Pressure. Inorganic Chemistry, 2011, 50, 1288-1294.	4.0	20
292	Magnetic properties of Cd \langle sub \rangle 1 \hat{a} ' \langle i \rangle x \langle i \rangle < sub \rangle Mn \langle sub \rangle < i \rangle x \langle sub \rangle Te/C nanocrystals. Nanotechnology, 2011, 22, 075703.	2.6	6
293	Effective multi-strain inhibition of influenza virus by anionic gold nanoparticles. MedChemComm, 2011, 2, 421.	3.4	37
294	Chemical disorder influence on magnetic state of optimally-doped La0.7Ca0.3MnO3. Journal of Applied Physics, 2011, 110, .	2.5	21
295	Antifungal activity of ZnO nanoparticlesâ€"the role of ROS mediated cell injury. Nanotechnology, 2011, 22, 105101.	2.6	396
296	Sonochemical Coating of Paper by Microbiocidal Silver Nanoparticles. Langmuir, 2011, 27, 720-726.	3.5	169
297	Zirconium nanoparticles prepared by the reduction of zirconium oxide using the RAPET method. Beilstein Journal of Nanotechnology, 2011, 2, 198-203.	2.8	40
298	Preparation of Antimicrobial Textiles Using a Sonochemical Method. Recent Patents on Biomedical Engineering, 2011, 4, 1-5.	0.5	1
299	Synthesis of a carbon-coated NiO/MgO core/shell nanocomposite as a Pd electro-catalyst support for ethanol oxidation. Materials Chemistry and Physics, 2011, 128, 341-347.	4.0	56
300	Structural, magnetic, electrical and electrochemical properties of NiFe2O4 synthesized by the molten salt technique. Materials Chemistry and Physics, 2011, 130, 285-292.	4.0	91
301	Corrugation of the external surface of multiwall carbon nanotubes by catalytic oxidative etching and its effect on their decoration with metal nanoparticles. Journal of Materials Science, 2011, 46, 2162-2172.	3.7	5
302	Removal of Silver and Lead Ions from Water Wastes Using Azolla filiculoides, an Aquatic Plant, Which Adsorbs and Reduces the Ions into the Corresponding Metallic Nanoparticles Under Microwave Radiation in 5Âmin. Water, Air, and Soil Pollution, 2011, 218, 365-370.	2.4	12
303	Modification of Parylene film-coated glass with TiO2 nanoparticles and its photocatalytic properties. Surface and Coatings Technology, 2011, 205, 3190-3197.	4.8	13
304	Stabilizing RNA by the Sonochemical Formation of RNA Nanospheres. Small, 2011, 7, 1068-1074.	10.0	34
305	Enhanced inactivation of bacteria by metalâ€oxide nanoparticles combined with visible light irradiation. Lasers in Surgery and Medicine, 2011, 43, 236-240.	2.1	37
306	Encapsulation of RNA Molecules in BSA Microspheres and Internalization into <i>Trypanosoma Brucei</i> Parasites and Human U2OS Cancer Cells. Advanced Functional Materials, 2011, 21, 3659-3666.	14.9	35

#	Article	IF	CITATIONS
307	Dry Autoclaving for the Nanofabrication of Sulfides, Selenides, Borides, Phosphides, Nitrides, Carbides, and Oxides. Advanced Materials, 2011, 23, 1179-1190.	21.0	43
308	Sonochemical Synthesis of DNA Nanospheres. ChemBioChem, 2011, 12, 1678-1681.	2.6	32
309	Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation. Bioresource Technology, 2011, 102, 4265-4269.	9.6	209
310	One-step synthesis of prolate spheroidal-shaped carbon produced by the thermolysis of octene under its autogenic pressure. Carbon, 2011, 49, 1067-1074.	10.3	11
311	Optimization of bio-diesel production from soybean and wastes of cooked oil: Combining dielectric microwave irradiation and a SrO catalyst. Bioresource Technology, 2011, 102, 1073-1078.	9.6	86
312	Coating a stainless steel plate with silver nanoparticles by the sonochemical method. Ultrasonics Sonochemistry, 2011, 18, 356-362.	8.2	37
313	Attaching Different Kinds of Proteinaceous Nanospheres to a Variety of Fabrics Using Ultrasound Radiation. Israel Journal of Chemistry, 2010, 50, 524-529.	2.3	12
314	Synthesis and Characterization of Hierarchically Structured La2O2M@C:Eu3+ (M = S, Se) Microflowers by a Single-Step RAPET Method. European Journal of Inorganic Chemistry, 2010, 2010, 5685-5690.	2.0	2
315	Oneâ€Step Preparation of Multifunctional Chitosan Microspheres by a Simple Sonochemical Method. Chemistry - A European Journal, 2010, 16, 562-567.	3.3	43
316	Microspheres of Mixed Proteins. Chemistry - A European Journal, 2010, 16, 2108-2114.	3.3	21
317	The Development and Characterization of Starch Microspheres Prepared by a Sonochemical Method for the Potential Drug Delivery of Insulin. Macromolecular Chemistry and Physics, 2010, 211, 924-931.	2.2	27
318	Chiral separation abilities: Aspartic acid block copolymer-imprinted mesoporous silica. Microporous and Mesoporous Materials, 2010, 129, 82-89.	4.4	51
319	Solid state synthesis of water-dispersible silicon nanoparticles from silica nanoparticles. Journal of Solid State Chemistry, 2010, 183, 1442-1447.	2.9	14
320	The application of ultrasound radiation to the synthesis of nanocrystalline metal oxide in a non-aqueous solvent. Ultrasonics Sonochemistry, 2010, 17, 173-178.	8.2	55
321	Sonochemical stabilization of ultrafine colloidal biocompatible magnetite nanoparticles using amino acid, l-arginine, for possible bio applications. Ultrasonics Sonochemistry, 2010, 17, 730-737.	8.2	60
322	In situ sonochemical hydrolysis and deposition of composite layers of ionic liquid entrapped in colloidal silica network and their application as sensors for various gases. Ultrasonics Sonochemistry, 2010, 17, 726-729.	8.2	5
323	Inhibition of HSVâ€1 Attachment, Entry, and Cellâ€toâ€Cell Spread by Functionalized Multivalent Gold Nanoparticles. Small, 2010, 6, 1044-1050.	10.0	186
324	Strontium hexaferrite nanomagnets suspended in a cosmetic preparation: a convenient tool to evaluate the biological effects of surface magnetism on human skin. Skin Research and Technology, 2010, 16, 316-24.	1.6	5

#	Article	IF	CITATIONS
325	Phase-separation in ZnxCd1-xSe/C Core/shell nanocrystals studied with cathodoluminescence spectroscopy. Materials Research Society Symposia Proceedings, 2010, 1260, 1.	0.1	O
326	Infrared-wave number-dependent metal–insulator transition in vanadium dioxide nanoparticles. Applied Physics Letters, 2010, 96, 243111.	3.3	21
327	Antibacterial, antiviral, and antibiofilms nanoparticles. , 2010, , .		1
328	Luminescent and Ferromagnetic CdS:Mn ²⁺ /C Coreâ^'Shell Nanocrystals. Journal of Physical Chemistry C, 2010, 114, 22002-22011.	3.1	32
329	Decorating Parylene-Coated Glass with ZnO Nanoparticles for Antibacterial Applications: A Comparative Study of Sonochemical, Microwave, and Microwave-Plasma Coating Routes. ACS Applied Materials & Diterfaces, 2010, 2, 1052-1059.	8.0	59
330	Ultrasound Radiation as a "Throwing Stones―Technique for the Production of Antibacterial Nanocomposite Textiles. ACS Applied Materials & Interfaces, 2010, 2, 1999-2004.	8.0	69
331	Electron paramagnetic resonance study of size and nonstoichiometry effects on magnetic ordering in half-doped La0.5Ca0.5MnO3 manganite. Journal of Applied Physics, 2010, 107, 09D702.	2.5	12
332	Synthesis of ZnO and Zn Nanoparticles in Microwave Plasma and Their Deposition on Glass Slides. Langmuir, 2010, 26, 5976-5984.	3.5	62
333	Chiral-mesoporous-polypyrrole nanoparticles: Its chiral recognition abilities and use in enantioselective separation. Journal of Materials Chemistry, 2010, 20, 4085.	6.7	58
334	Carrier relaxation dynamics of ZnxCd1â^'xSe/C core/shell nanocrystals with phase separation as studied by time-resolved cathodoluminescence. Applied Physics Letters, 2009, 95, 181903.	3.3	2
335	The sonochemical synthesis and characterization of $Cu < sub > 1a^* < i > x < i > < i > x < i > < i > x < i > < x < x < x < x < x < x < x < $	2.6	39
336	Paramagnetic spin correlations and spin dynamics in doped manganites as the precursors of their magnetic ordering. Journal of Applied Physics, 2009, 105, .	2.5	10
337	Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROSâ€Mediated Cell Injury. Advanced Functional Materials, 2009, 19, 842-852.	14.9	850
338	Oneâ€Step Synthesis and Characterization of SiC, Mo 2 C, and WC Nanostructures. European Journal of Inorganic Chemistry, 2009, 2009, 709-715.	2.0	23
339	Sonoelectrochemical Synthesis of Metallic Aluminum Nanoparticles. European Journal of Inorganic Chemistry, 2009, 2009, 2050-2053.	2.0	47
340	A microwaveâ€assisted process for coating polymer and glass surfaces with semiconducting ZnO submicron particles. Journal of Applied Polymer Science, 2009, 113, 1773-1780.	2.6	12
341	Antibiofilm activity of nanosized magnesium fluoride. Biomaterials, 2009, 30, 5969-5978.	11.4	150
342	Synthesis and characterization of titanium nitride, niobium nitride, and tantalum nitride nanocrystals via the RAPET (reaction under autogenic pressure at elevated temperature) technique. Journal of Nanoparticle Research, 2009, 11, 995-1003.	1.9	19

#	Article	IF	Citations
343	Solvothermal synthesis of nanocrystalline zinc oxide doped with Mn2+, Ni2+, Co2+ and Cr3+ ions. Journal of Nanoparticle Research, 2009, 11, 1991-2002.	1.9	42
344	Methanation of Carbon Dioxide on Ni Catalysts on Mesoporous ZrO2 Doped with Rare Earth Oxides. Catalysis Letters, 2009, 130, 455-462.	2.6	80
345	Synthesis and Characterization of Rare Earth Orthovanadate (RVO4; RÂ=ÂLa, Ce, Nd, Sm, Eu & Description (RVO4) Nanorods/Nanocrystals/Nanospindles by a Facile Sonochemical Method and Their Catalytic Properties. Journal of Cluster Science, 2009, 20, 291-305.	3.3	118
346	Selective cytotoxic effect of ZnO nanoparticles on glioma cells. Nano Research, 2009, 2, 882-890.	10.4	236
347	CuO–cotton nanocomposite: Formation, morphology, and antibacterial activity. Surface and Coatings Technology, 2009, 204, 54-57.	4.8	295
348	Sonochemical deposition of magnetite on silver nanocrystals. Ultrasonics Sonochemistry, 2009, 16, 132-135.	8.2	21
349	Chloroethene dehalogenation with ultrasonically produced air-stable nano iron. Ultrasonics Sonochemistry, 2009, 16, 617-621.	8.2	32
350	Sonochemically prepared BSA microspheres containing Gemcitabine, and their potential application in renal cancer therapeutics. Acta Biomaterialia, 2009, 5, 3031-3037.	8.3	38
351	Coating of glass with ZnO via ultrasonic irradiation and a study of its antibacterial properties. Applied Surface Science, 2009, 256, S3-S8.	6.1	114
352	A One-step, Template-free Synthesis, Characterization, Optical and Magnetic Properties of $Zn < sub > 1a^2 < sub > Mn < sub > (i) x < / i) x < / sub > Te Nanosheets. Chemistry of Materials, 2009, 21, 326-335.$	6.7	37
353	Highly Luminescent ZnxCd1â^'xSe/C Core/Shell Nanocrystals: Large Scale Synthesis, Structural and Cathodoluminescence Studies. ACS Nano, 2009, 3, 1864-1876.	14.6	24
354	Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics. Surface and Coatings Technology, 2009, 204, 718-722.	4.8	122
355	EPR Study of Visible Light-Induced ROS Generation by Nanoparticles of ZnO. Journal of Physical Chemistry C, 2009, 113, 15997-16001.	3.1	213
356	Inhibition of Herpes Simplex Virus Type 1 Infection by Silver Nanoparticles Capped with Mercaptoethane Sulfonate. Bioconjugate Chemistry, 2009, 20, 1497-1502.	3.6	305
357	Converting Stöber Silica and Mediterranean Sand to High Surface Area Silicon by a Reaction under Autogenic Pressure at Elevated Temperatures. Journal of Physical Chemistry C, 2009, 113, 10521-10526.	3.1	42
358	Antibacterial Properties of an In Situ Generated and Simultaneously Deposited Nanocrystalline ZnO on Fabrics. ACS Applied Materials & Samp; Interfaces, 2009, 1, 361-366.	8.0	268
359	Synthesis and Electrochemical Oxygen Reduction of Platinum Nanoparticles Supported on Mesoporous TiO ₂ . Journal of Physical Chemistry C, 2009, 113, 18707-18712.	3.1	64
360	Coreâ^'Shell Vanadium Oxideâ^'Carbon Nanoparticles: Synthesis, Characterization, and Luminescence Properties. Journal of Physical Chemistry C, 2009, 113, 10500-10504.	3.1	31

#	Article	IF	Citations
361	Deposition of Air-Stable Zinc Nanoparticles on Glass Slides by the Solvent-Assisted Deposition in Plasma (SADIP) Method. Journal of Physical Chemistry C, 2009, 113, 14097-14101.	3.1	7
362	Enantioselective Separation Using Chiral Mesoporous Spherical Silica Prepared by Templating of Chiral Block Copolymers. ACS Applied Materials & Samp; Interfaces, 2009, 1, 1834-1842.	8.0	70
363	Reduction of Titanium Dioxide to Metallic Titanium Conducted under the Autogenic Pressure of the Reactants. Inorganic Chemistry, 2009, 48, 7066-7069.	4.0	11
364	A general approach to directing assembly behavior of gold colloids by co-polymer molecules, and tracking and imaging solution nanostructures of the polymer molecules. Soft Matter, 2009, , .	2.7	1
365	Electrochemical reduction of trinitrotoluene on core–shell tin–carbon electrodes. Electrochimica Acta, 2008, 54, 690-697.	5.2	21
366	Deposition of Gold Particles on Mesoporous Catalyst Supports by Sonochemical Method, and their Catalytic Performance for CO Oxidation. Catalysis Letters, 2008, 120, 19-24.	2.6	32
367	Ultrasound-assisted dispersion of SrFe12O19 nanoparticles in organic solvents and the use of the dispersion as magnetic cosmetics. Journal of Nanoparticle Research, 2008, 10, 191-195.	1.9	14
368	Combining MoS2 or MoSe2 nanoflakes with carbon by reacting Mo(CO)6 with S or Se under their autogenic pressure at elevated temperature. Journal of Materials Science, 2008, 43, 1966-1973.	3.7	25
369	Modified PVA–Fe ₃ O ₄ Nanoparticles as Protein Carriers into Sperm Cells. Small, 2008, 4, 1453-1458.	10.0	64
370	Sonochemical immobilization of silver nanoparticles on porous polypropylene. Journal of Polymer Science Part A, 2008, 46, 1719-1729.	2.3	37
371	Preparation and Properties of Proteinaceous Microspheres Made Sonochemically. Chemistry - A European Journal, 2008, 14, 3840-3853.	3.3	89
372	Synthesis of Copper Dendrite Nanostructures by a Sonoelectrochemical Method. Chemistry - A European Journal, 2008, 14, 4696-4703.	3.3	31
373	Sonochemical Synthesis under a Magnetic Field: Fabrication of Nickel and Cobalt Particles and Variation of Their Physical Properties. Chemistry - A European Journal, 2008, 14, 10115-10122.	3.3	35
374	Synthesis, Characterization, and Photoluminescence Properties of In2O3 Nanocrystals Encapsulated by Carbon Vesicles and Neat In2O3 Nanocrystals Generated by the RAPET Technique. European Journal of Inorganic Chemistry, 2008, 2008, 919-924.	2.0	10
375	A General Process for the Fabrication of Air-Stable Metallic Particles (Cd, Zn and Al) by the Decomposition of Alkyl–Metal Compounds. European Journal of Inorganic Chemistry, 2008, 2008, 2471-2475.	2.0	3
376	One‧tep Solventâ€Free Synthesis and Characterization of Zn _{1â^'x} Mn _x Se@C Nanorods and Nanowires. Advanced Functional Materials, 2008, 18, 1641-1653.	14.9	31
377	Proâ€angiogenic Properties of Europium(III) Hydroxide Nanorods. Advanced Materials, 2008, 20, 753-756.	21.0	99
378	Trapping Metallic Liquid Mercury in a Carbon Shell by the Decomposition of Dimethyl Mercury. Advanced Materials, 2008, 20, 1000-1002.	21.0	6

#	Article	IF	CITATIONS
379	A template-free, sonochemical route to porous ZnO nano-disks. Microporous and Mesoporous Materials, 2008, 110, 553-559.	4.4	113
380	An easy single step route to synthesize openâ^'ended carbon nanotubes. Carbon, 2008, 46, 1615-1619.	10.3	4
381	Selective oxidation of CO in the presence of air over gold-based catalysts Au/TiO2/C (sonochemistry) and Au/TiO2/C (microwave). Ultrasonics Sonochemistry, 2008, 15, 539-547.	8.2	13
382	Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology, 2008, 19, 245705.	2.6	371
383	Depositing silver nanoparticles on/in a glass slide by the sonochemical method. Nanotechnology, 2008, 19, 435604.	2.6	59
384	Micro to Nano Conversion: A One-Step, Environmentally Friendly, Solid State, Bulk Fabrication of WS ₂ and MoS ₂ Nanoplates. Crystal Growth and Design, 2008, 8, 1126-1132.	3.0	38
385	Microwave-Assisted Insertion of Silver Nanoparticles into 3-D Mesoporous Zinc Oxide Nanocomposites and Nanorods. Journal of Physical Chemistry C, 2008, 112, 659-665.	3.1	89
386	Effect of Reaction Parameters on the Hydrolysis of Tetramethyl Orthosilicate and Tetraethyl Orthosilicate and their Surface Morphology in an Ionic Liquid. Journal of the American Ceramic Society, 2008, 91, 3024-3030.	3.8	14
387	Nanometer size effect on magnetic order in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext> La </mml:mtext> </mml:mrow> <mml:mrow> <mml:mr< td=""><td>> < 111ml:mr</td><td>1><mark>0.</mark>4</td></mml:mr<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	> < 111ml:mr	1> <mark>0.</mark> 4
388	Continuous Flow, Circulating Microwave System and Its Application in Nanoparticle Fabrication and Biodiesel Synthesis. Journal of Physical Chemistry C, 2008, 112, 8802-8808.	3.1	99
389	Synthesis of metallic magnesium nanoparticles by sonoelectrochemistry. Chemical Communications, 2008, , 1795.	4.1	100
390	Synthesis of Hexagonal-Shaped SnO ₂ Nanocrystals and SnO ₂ @C Nanocomposites for Electrochemical Redox Supercapacitors. Journal of Physical Chemistry C, 2008, 112, 1825-1830.	3.1	223
391	Differential Adsorption of Silver Nanoparticles to the Inner and Outer Surfaces of the Agave americana Cuticle. Journal of Physical Chemistry C, 2008, 112, 18082-18086.	3.1	4
392	Synthesis of WO3nanoparticles using a biopolymer as a template for electrocatalytic hydrogen evolution. Nanotechnology, 2008, 19, 025702.	2.6	44
393	Facile Synthesis of Photoluminescent ZnS and ZnSe Nanopowders. Langmuir, 2008, 24, 10462-10466.	3.5	52
394	Pulsed sonoelectrochemical synthesis of polyaniline nanoparticles and their capacitance properties. Synthetic Metals, 2008, 158, 848-853.	3.9	45
395	One-Step Synthesis and Characterization of Ultrastable and Amorphous Fe ₃ O ₄ Colloids Capped with Cysteine Molecules. Journal of Physical Chemistry C, 2008, 112, 15429-15438.	3.1	67
396	Fabrication of Magnetic Nanoparticles Using RAPET Technique with or without Employing External Magnetic Field. Journal of Physical Chemistry C, 2008, 112, 6627-6637.	3.1	4

#	Article	IF	CITATIONS
397	Single Step, Low-Temperature Synthesis of Submicron-Sized Rare Earth Hexaborides. Journal of Physical Chemistry C, 2008, 112, 1795-1802.	3.1	97
398	Effects of a 10 T External Magnetic Field on the Thermal Decomposition of Fe, Ni, and Co Acetyl Acetonates. Langmuir, 2008, 24, 7532-7537.	3.5	7
399	One-Pot Synthesis and Characterization of Mn2+-Doped Wurtzite CdSe Nanocrystals Encapsulated with Carbon. Journal of Physical Chemistry C, 2008, 112, 7624-7630.	3.1	27
400	Facile Synthesis of WSe ₂ Nanoparticles and Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 5356-5360.	3.1	22
401	Selective Coating of Anatase and Rutile TiO2 on Carbon via Ultrasound Irradiation: Mitigating Fuel Cell Catalyst Degradation. Journal of Fuel Cell Science and Technology, 2008, 5, .	0.8	6
402	Comparative electron magnetic resonance study of magnetic ordering in La1â^'xCaxMnO3 (x=0.1,0.3) bulk and nanometer sized manganite crystals. Journal of Applied Physics, 2008, 103, 07F715.	2.5	8
403	Templating Mesoporous Silica with Chiral Block Copolymers and Its Application for Enantioselective Separation. Journal of Physical Chemistry B, 2007, 111, 11105-11110.	2.6	66
404	Synthesis of Porous \hat{l}_{\pm} -Fe $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 3 $<$ /sub $>$ Nanorods and Deposition of Very Small Gold Particles in the Pores for Catalytic Oxidation of CO. Chemistry of Materials, 2007, 19, 4776-4782.	6.7	158
405	Microwave-Assisted Coating of PMMA Beads by Silver Nanoparticles. Langmuir, 2007, 23, 9891-9897.	3.5	40
406	Synthesis of Nanocrystalline Zirconium Titanate and its Dielectric Properties. Journal of Physical Chemistry C, 2007, 111, 2484-2489.	3.1	29
407	WS2Breeds with Carbon to Create a Wormlike Nanostructure and Assembly:  Reaction of W(CO)6with S under Autogenic Pressure at Elevated Temperature under Inert Atmosphere. Journal of Physical Chemistry C, 2007, 111, 134-140.	3.1	27
408	Synthesis of Ferromagnetic Coreâ-'Shell Nanofibers. Journal of Physical Chemistry C, 2007, 111, 16781-16786.	3.1	12
409	Disorder-induced phase coexistence in bulk doped manganites and its suppression in nanometer-sized crystals: The case ofLa0.9Ca0.1MnO3. Physical Review B, 2007, 76, .	3.2	57
410	Sonochemical Insertion of Silver Nanoparticles into Two-Dimensional Mesoporous Alumina. Journal of Physical Chemistry C, 2007, 111, 11161-11167.	3.1	32
411	Manipulating the Self-Assembling Process to Obtain Control over the Morphologies of Copper Oxide in Hydrothermal Synthesis and Creating Pores in the Oxide Architecture. Langmuir, 2007, 23, 5971-5977.	3.5	42
412	EXAFS and XANES Investigations of CuFe $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 4 $<$ /sub $>$ Nanoparticles and CuFe $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 4 $<$ /sub $>$ â $^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{^{$	3.1	60
413	External Magnetic Field-Induced Mesoscopic Organization of Fe3O4Pyramids and Carbon Sheets. Inorganic Chemistry, 2007, 46, 4951-4959.	4.0	16
414	Creation of Shock-Abrasion Resistance Build-up Metal Using a Physicochemical Model of High-Temperature Processes. Israel Journal of Chemistry, 2007, 47, 351-355.	2.3	3

#	Article	IF	Citations
415	A microwave-assisted polyol method for the deposition of silver nanoparticles on silica spheres. Nanotechnology, 2007, 18, 255601.	2.6	50
416	Encapsulating ZnS and ZnSe Nanocrystals in the Carbon Shell:  A RAPET Approach. Journal of Physical Chemistry C, 2007, 111, 13309-13314.	3.1	27
417	Ultrasound-assisted coating of nylon 6,6 with silver nanoparticles and its antibacterial activity. Journal of Applied Polymer Science, 2007, 104, 1423-1430.	2.6	111
418	Sonochemical deposition of silver nanoparticles on wool fibers. Journal of Applied Polymer Science, 2007, 104, 1732-1737.	2.6	60
419	Coating silver nanoparticles on poly(methyl methacrylate) chips and spheres via ultrasound irradiation. Journal of Applied Polymer Science, 2007, 104, 2868-2876.	2.6	44
420	Large-Scale Synthesis, Annealing, Purification, and Magnetic Properties of Crystalline Helical Carbon Nanotubes with Symmetrical Structures. Advanced Functional Materials, 2007, 17, 1542-1550.	14.9	72
421	The Thermal Decomposition of Three Magnetic Acetates at Their Autogenic Pressure Yields Different Products. Why?. European Journal of Inorganic Chemistry, 2007, 2007, 2089-2096.	2.0	21
422	A study of the stability of pyrolytic carbon-coated Fe/SiO2 composites in HNO3 and the effect of pyrolysis temperatures on their magnetic properties. Solid State Communications, 2007, 142, 265-269.	1.9	7
423	Are sonochemically prepared α-amylase protein microspheres biologically active?. Ultrasonics Sonochemistry, 2007, 14, 1-5.	8.2	39
424	Doping nanoparticles into polymers and ceramics using ultrasound radiation. Ultrasonics Sonochemistry, 2007, 14, 418-430.	8.2	86
425	Characterization and activity of sonochemically-prepared BSA microspheres containing Taxol – An anticancer drug. Ultrasonics Sonochemistry, 2007, 14, 661-666.	8.2	52
426	Carbon-Coated Anatase TiO2 Nanocomposite as a High-Performance Electrocatalyst Support. Small, 2007, 3, 1189-1193.	10.0	107
427	Magnetic inhomogeneities in crystalline bulk and nanometer sized La _{0.7} Ca _{0.3} MnO ₃ : ESR probing. Physica Status Solidi (B): Basic Research, 2007, 244, 4554-4557.	1.5	7
428	Synthesis of stable spherical platinum diphosphide, PtP2/carbon nanocomposite by reacting Pt(PPh3)4 at elevated temperature under autogenic pressure. Materials Research Bulletin, 2007, 42, 626-632.	5.2	11
429	Amorphous Iron(III) OxideA Review. Journal of Physical Chemistry B, 2007, 111, 4003-4018.	2.6	260
430	Synthesis of carbon encapsulated nanocrystals of WP by reacting W(CO)6 with triphenylphosphine at elevated temperature under autogenic pressure. Journal of Nanoparticle Research, 2007, 9, 1187-1193.	1.9	16
431	Synthesis and characterization of Nb2O5@C core-shell nanorods and Nb2O5 nanorods by reacting Nb(OEt)5 via RAPET (reaction under autogenic pressure at elevated temperatures) technique. Nanoscale Research Letters, 2007, 2, 17-23.	5.7	29
432	Pulsed Sonoelectrochemical Synthesis of Size-Controlled Copper Nanoparticles Stabilized by Poly(N-vinylpyrrolidone). Journal of Physical Chemistry B, 2006, 110, 16947-16952.	2.6	164

#	Article	IF	Citations
433	Synthesis and Characterization of TiO2@C Coreâ [°] Shell Composite Nanoparticles and Evaluation of Their Photocatalytic Activities. Chemistry of Materials, 2006, 18, 2275-2282.	6.7	166
434	Gold-Induced Crystallization of SiO2and TiO2Powders. Crystal Growth and Design, 2006, 6, 293-296.	3.0	27
435	Synthesis of a Conducting SiO2â^'Carbon Composite from Commercial Silicone Grease and Its Conversion to Paramagnetic SiO2 Particles. Journal of Physical Chemistry B, 2006, 110, 13420-13424.	2.6	21
436	Assembly of Au colloids into linear and spherical aggregates and effect of ultrasound irradiation on structure. Journal of Materials Chemistry, 2006, 16, 489-495.	6.7	30
437	Acoustic cavitationâ€"an efficient energetic tool to synthesize nanosized CuOâ€"ZrO2catalysts with a mesoporous distribution. New Journal of Chemistry, 2006, 30, 102-107.	2.8	19
438	Growth of carbon sausages filled with in situ formed tungsten oxide nanorods: thermal dissociation of tungsten(vi) isopropoxide in isopropanol. New Journal of Chemistry, 2006, 30, 370.	2.8	20
439	Loading Magnetic Nanoparticles into Sperm Cells Does Not Affect Their Functionality. Langmuir, 2006, 22, 9480-9482.	3.5	71
440	Are Ionic Liquids Really a Boon for the Synthesis of Inorganic Materials? A General Method for the Fabrication of Nanosized Metal Fluorides. Chemistry of Materials, 2006, 18, 3162-3168.	6.7	183
441	Sonochemically Prepared Pt/CeO2and Its Application as a Catalyst in Ethyl Acetate Combustion. Langmuir, 2006, 22, 7072-7077.	3.5	34
442	Implementation of an Electric Field (AC and DC) for the Growth of Carbon Filaments via Reaction under Autogenic Pressure at Elevated Temperatures of Mesitylene without Catalyst or Solvent. Chemistry of Materials, 2006, 18, 1512-1519.	6.7	19
443	Carbon-Coated Core Shell Structured Copper and Nickel Nanoparticles Synthesized in an Ionic Liquid. Journal of Physical Chemistry B, 2006, 110, 17711-17714.	2.6	97
444	Crystallization of ZnO on Crystalline Magnetite Nanoparticles in the Presence of Ultrasound Radiation. Crystal Growth and Design, 2006, 6, 2260-2265.	3.0	10
445	Sonoelectrochemistry of Cu2+in the Presence of Cetyltrimethylammonium Bromide:Â Obtaining CuBr Instead of Copper. Chemistry of Materials, 2006, 18, 1184-1189.	6.7	30
446	Electrochemical properties of bamboo-shaped multiwalled carbon nanotubes generated by solid state pyrolysis. Electrochemistry Communications, 2006, 8, 1099-1105.	4.7	49
447	The dependence of the oriented growth of carbon filaments on the intensity of a magnetic field. Carbon, 2006, 44, 1913-1918.	10.3	13
448	Magnetic properties of dense graphitic filaments formed via thermal decomposition of mesitylene in an applied electric field. Carbon, 2006, 44, 2864-2867.	10.3	10
449	High yield one-step synthesis of carbon spheres produced by dissociating individual hydrocarbons at their autogenic pressure at low temperatures. Carbon, 2006, 44, 3285-3292.	10.3	75
450	Critical current density in the MgB2 nanoparticles prepared under autogenic pressure at elevated temperature. Chemical Physics Letters, 2006, 433, 115-119.	2.6	18

#	Article	IF	Citations
451	Phase transition from the ferromagnetic to superparamagnetic with a loop shift in 5-nm nickel particles. Journal of Magnetism and Magnetic Materials, 2006, 305, 504-508.	2.3	13
452	Preparation and properties of CuCr2Se4 ferromagnetic spinel nanocrystals. Glass Physics and Chemistry, 2006, 32, 330-336.	0.7	11
453	Formation of a Three-Dimensional Microstructure of Fe3O4â^Poly(vinyl alcohol) Composite by Evaporating the Hydrosol under a Magnetic Field. Journal of Physical Chemistry B, 2006, 110, 8194-8203.	2.6	54
454	Microwave-assisted synthesis of tin sulfide nanoflakes and their electrochemical performance as Li-inserting materials. Journal of Solid State Electrochemistry, 2006, 11, 186-194.	2.5	42
455	Optimization of sintering on the structural, electrical and dielectric properties of SnO2 coated CuFe2O4 nanoparticles. Materials Chemistry and Physics, 2006, 99, 109-116.	4.0	25
456	The synthesis and magnetic properties of monodispersed single-domain nickel nanospheres and highly globular nanostructures of NicoreNiOshell. Journal of Magnetism and Magnetic Materials, 2006, 301, 13-21.	2.3	16
457	Testing Carbon-Coated VOx Prepared via Reaction under Autogenic Pressure at Elevated Temperature as Li-Insertion Materials. Advanced Materials, 2006, 18, 1431-1436.	21.0	149
458	Synthesis of WC Nanotubes. Advanced Materials, 2006, 18, 2023-2027.	21.0	90
459	Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. Journal of Colloid and Interface Science, 2005, 284, 489-494.	9.4	138
460	Evaluation of metal oxide phase assembling mode inside the nanotubular pores of mesostructured silica. Microporous and Mesoporous Materials, 2005, 79, 307-318.	4.4	125
461	The preparation of avidin microspheres using the sonochemical method and the interaction of the microspheres with biotin. Ultrasonics Sonochemistry, 2005, 12, 405-409.	8.2	38
462	Coating Noble Metal Nanocrystals (Ag, Au, Pd, and Pt) on Polystyrene Spheres via Ultrasound Irradiation. Langmuir, 2005, 21, 3635-3640.	3.5	158
463	Preparation of stable porous nickel and cobalt oxides using simple inorganic precursor, instead of alkoxides, by a sonochemical technique. Ultrasonics Sonochemistry, 2005, 12, 205-212.	8.2	36
464	Synthesis of tin nanorods via a sonochemical method combined with a polyol process. Ultrasonics Sonochemistry, 2005, 12, 243-247.	8.2	52
465	Platinum and ruthenium catalysts on mesoporous titanium and zirconium oxides for the catalytic wet air oxidation of model compounds. Applied Catalysis B: Environmental, 2005, 59, 121-130.	20.2	58
466	Sonochemical Reaction of [Fe(CO)5] with 1-Methylimidazole in An Ionic Liquid: Formation of [(1-Methylimidazole)6Fell](PF6)2. European Journal of Inorganic Chemistry, 2005, 2005, 522-528.	2.0	22
467	Sonochemical Synthesis and Characterization of Ni(C4H6N2)6(PF6)2, Fe(C4H6N2)6(BF4)2, and Ni(C4H6N2)6(BF4)2 in 1-Butyl-3-methylimidazole with Hexafluorophosphate and Tetrafluoroborate. European Journal of Inorganic Chemistry, 2005, 2005, 2669-2677.	2.0	13
468	Rapid Synthesis in Ionic Liquids of Room-Temperature-Conducting Solid Microsilica Spheres. Angewandte Chemie - International Edition, 2005, 44, 6560-6563.	13.8	36

#	Article	IF	Citations
469	Microwave-Assisted Synthesis of Nanocrystalline MgO and Its Use as a Bacteriocide. Advanced Functional Materials, 2005, 15, 1708-1715.	14.9	493
470	Sonochemistry and Other Novel Methods Developed for the Synthesis of Nanoparticles. , 2005, , 113-169.		12
471	From Discrete Particles to Spherical Aggregates: A Simple Approach to the Self-Assembly of Au Colloids. Chemistry - A European Journal, 2005, 11, 1473-1478.	3.3	47
472	A general method for preparing tellurides: Synthesis of PbTe, Ni2Te3, and Cu7Te5 from solutions under microwave radiation. Glass Physics and Chemistry, 2005, 31, 80-85.	0.7	7
473	Sonochemically Prepared high Dispersed Ru/TiO2 Mesoporous Catalyst for Partial Oxidation of Methane to Syngas. Catalysis Letters, 2005, 103, 9-14.	2.6	64
474	Sonochemical Deposition of Au Nanoparticles on Titania and the Significant Decrease in the Melting Point of Gold. Journal of Nanoscience and Nanotechnology, 2005, 5, 975-979.	0.9	43
475	The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries. Chemical Communications, 2005, , 921.	4.1	72
476	Crystallization of Highly Oriented ZnO Microrods on Carboxylic Acid-Terminated SAMs. Chemistry of Materials, 2005, 17, 5048-5056.	6.7	30
477	The sonochemical and microwave-assisted synthesis of nanosized YAG particles. New Journal of Chemistry, 2005, 29, 1445.	2.8	11
478	The microwave-assisted polyol synthesis of nanosized hard magnetic material, FePt. Journal of Materials Chemistry, 2005, 15, 698.	6.7	47
479	Novel Synthesis of High Surface Area Silicon Carbide by RAPET (Reactions under Autogenic Pressure at) Tj ETQq1	1 0.78431	4.rgBT /Ove
480	Fabrication and Magnetic Properties of Ni Nanospheres Encapsulated in a Fullerene-like Carbon. Journal of Physical Chemistry B, 2005, 109, 9495-9498.	2.6	70
481	Applied Magnetic Field Rejects the Coating of Ferromagnetic Carbon from the Surface of Ferromagnetic Cobalt: RAPET of CoZr2(acac)2(OiPr)8. Journal of Physical Chemistry B, 2005, 109, 6121-6125.	2.6	28
482	New Approach for the Removal of Metal Ions from Water:Â Adsorption onto Aquatic Plants and Microwave Reaction for the Fabrication of Nanometals. Journal of Physical Chemistry B, 2005, 109, 15179-15181.	2.6	12
483	Synthesis of WO3Nanorods by Reacting WO(OMe)4under Autogenic Pressure at Elevated Temperature Followed by Annealing. Inorganic Chemistry, 2005, 44, 9938-9945.	4.0	45
484	A sonochemical method for the synthesis of polyaniline and Au–polyaniline composites using H2O2 for enhancing rate and yield. Synthetic Metals, 2005, 148, 301-306.	3.9	55
485	Microwave approach for the synthesis of rhabdophane-type lanthanide orthophosphate (Ln = La, Ce,) Tj ETQq1 1 (733.).784314 i 2.8	rgBT /Overl 106
486	Synthesis of One-Dimensional and Porous TiO2 Nanostructures by Controlled Hydrolysis of Titanium Alkoxide via Coupling with an Esterification Reaction. Chemistry of Materials, 2005, 17, 6814-6818.	6.7	43

#	Article	IF	Citations
487	SYNTHESIS OF CARBON MATERIALS BY THE IMPOSITION OF A HIGH MAGNETIC FIELD., 2005,,.		O
488	Commercial edible oils as new solvents for ultrasonic synthesis of nanoparticles: the preparation of air stable nanocrystalline iron particles. Journal of Materials Chemistry, 2004, 14, 2975.	6.7	27
489	The Sonochemical Insertion of Nanomaterials into Mesostructures. Transactions of the Indian Ceramic Society, 2004, 63, 137-144.	1.0	7
490	Using sonochemistry for the fabrication of nanomaterials. Ultrasonics Sonochemistry, 2004, 11, 47-55.	8.2	1,058
491	Nanophase formation of strontium hexaferrite fine powder by the sonochemical method using Fe(CO)5. Journal of Magnetism and Magnetic Materials, 2004, 268, 95-104.	2.3	101
492	Sonochemical and soft-chemical intercalation of lithium ions into MnO2 polymorphs. Journal of Solid State Electrochemistry, 2004, 8, 957-967.	2.5	12
493	Microwave?assisted synthesis of submicrometer GaO(OH) and Ga2O3 rods. Journal of Nanoparticle Research, 2004, 6, 509-518.	1.9	34
494	Encapsulating a Superconducting Material, MgCNi3, in a Carbon Nanoflask. Advanced Materials, 2004, 16, 972-975.	21.0	14
495	Preparation and Characterization of Cu2SnSe4 Nanoparticles Using a Microwave-Assisted Polyol Method. European Journal of Inorganic Chemistry, 2004, 2004, 1859-1864.	2.0	14
496	Growing ZnO Crystals on Magnetite Nanoparticles. Chemistry - A European Journal, 2004, 10, 1845-1850.	3.3	27
497	Reactions under Autogenic Pressure at Elevated Temperature (RAPET) of Various Alkoxides: Formation of Metals/Metal Oxides-Carbon Core-Shell Structures. Chemistry - A European Journal, 2004, 10, 4467-4473.	3.3	90
498	Insights into the sonochemical decomposition of Fe(CO)5: theoretical and experimental understanding of the role of molar concentration and power density on the reaction yield. Ultrasonics Sonochemistry, 2004, 11, 373-378.	8.2	38
499	A fast synthesis for Zintl phase compounds of Na3SbTe3, NaSbTe2 and K3SbTe3 by microwave irradiation. Journal of Solid State Chemistry, 2004, 177, 361-365.	2.9	22
500	Carbon spherules: synthesis, properties and mechanistic elucidation. Carbon, 2004, 42, 111-116.	10.3	153
501	Magnetic field guided formation of long carbon filaments (sausages). Carbon, 2004, 42, 2738-2741.	10.3	21
502	Sonochemical decoration of multi-walled carbon nanotubes with nanocrystalline tin. New Journal of Chemistry, 2004, 28, 1056.	2.8	32
503	Oriented Growth of ZnO Crystals on Self-Assembled Monolayers of Functionalized Alkyl Silanes. Crystal Growth and Design, 2004, 4, 169-175.	3.0	40
504	Stabilization of Metastable Face-Centered Cubic Cobalt and the Tetragonal Phase of Zirconia by a Carbon Shell:  Reaction under Autogenic Pressure at Elevated Temperature of CoZr2(acac)2(OiPr)8. Chemistry of Materials, 2004, 16, 1793-1798.	6.7	54

#	Article	IF	Citations
505	Sonochemical Synthesis of Nanocrystalline Rare Earth Orthoferrites Using Fe(CO)5Precursor. Chemistry of Materials, 2004, 16, 3623-3632.	6.7	62
506	Rapid synthesis of nanoparticles of hexagonal type In2O3 and spherical type Tl2O3 by microwave irradiation. New Journal of Chemistry, 2004, 28, 1060.	2.8	48
507	Tailoring the Properties of Feâ^'Fe3C Nanocrystalline Particles Prepared by Sonochemistry. Journal of Physical Chemistry B, 2004, 108, 7620-7626.	2.6	33
508	Novel Synthesis of Ordered MCM-41 Titanosilicates with Very High Titanium Content via Ultrasound Radiation. Israel Journal of Chemistry, 2004, 44, 235-241.	2.3	1
509	The Surface Chemistry of Au Colloids and Their Interactions with Functional Amino Acids. Journal of Physical Chemistry B, 2004, 108, 4046-4052.	2.6	410
510	Sonochemical synthesis of nanocrystalline LaFeO3. Journal of Materials Chemistry, 2004, 14, 764.	6.7	103
511	Thermal decomposition of tetraethylorthosilicate (TEOS) produces silicon coated carbon spheres. Journal of Materials Chemistry, 2004, 14, 966.	6.7	40
512	Ultrasound-Assisted Polyol Method for the Preparation of SBA-15-Supported Ruthenium Nanoparticles and the Study of Their Catalytic Activity on the Partial Oxidation of Methane. Langmuir, 2004, 20, 8352-8356.	3.5	64
513	The Effect of a Magnetic Field on a RAPET (Reaction under Autogenic Pressure at Elevated Temperature) of MoO(OMe)4:Â Fabrication of MoO2Nanoparticles Coated with Carbon or Separated MoO2and Carbon Particles. Journal of Physical Chemistry B, 2004, 108, 6322-6327.	2.6	49
514	Microwave Synthesis of Coreâ^'Shell Gold/Palladium Bimetallic Nanoparticles. Langmuir, 2004, 20, 3431-3434.	3.5	195
515	Catalytic Aerobic Epoxidation of Olefins by Nanostructured Amorphous CoO–MCM-41. Catalysis Letters, 2003, 86, 197-200.	2.6	31
516	Fabrication of the MgCxCo3 Ternary Phase Encapsulated in Carbon Nanoflasks. Advanced Materials, 2003, 15, 926-930.	21.0	5
517	Synthesis and characterization of a micro scale zinc oxide–PVA composite by ultrasound irradiation and the effect of composite on the crystal growth of zinc oxide. Journal of Crystal Growth, 2003, 250, 409-417.	1.5	36
518	Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method. Electrochemistry Communications, 2003, 5, 940-945.	4.7	209
519	A novel ultrasound-assisted approach to the synthesis of CdSe and CdS nanoparticles. Journal of Solid State Chemistry, 2003, 172, 102-110.	2.9	67
520	A comparison between hot-hydrolysis and sonolysis of various Mn(II) salts. Ultrasonics Sonochemistry, 2003, 10, 17-23.	8.2	32
521	Preparation of porous cobalt and nickel oxides from corresponding alkoxides using a sonochemical technique and its application as a catalyst in the oxidation of hydrocarbons. Ultrasonics Sonochemistry, 2003, 10, 1-9.	8.2	49
522	Sonochemical polymerization of diphenylmethane. Ultrasonics Sonochemistry, 2003, 10, 11-15.	8.2	15

#	Article	IF	Citations
523	The sonochemical preparation of a mesoporous NiO/yttria stabilized zirconia composite. Microporous and Mesoporous Materials, 2003, 60, 91-97.	4.4	15
524	Microwave-Assisted Polyol Synthesis of CulnTe2and CulnSe2Nanoparticles. Inorganic Chemistry, 2003, 42, 7148-7155.	4.0	122
525	Microwave-assisted solid-state synthesis and characterization of intermetallic compounds of Li3Bi and Li3Sb. Journal of Materials Chemistry, 2003, 13, 2607.	6.7	35
526	Microwave-assisted synthesis of nanosized MoSe2. Journal of Materials Chemistry, 2003, 13, 2603.	6.7	66
527	Deposition of Gold Nanoparticles on Silica Spheres:Â A Sonochemical Approach. Chemistry of Materials, 2003, 15, 1111-1118.	6.7	239
528	Mesoporous Structures from Supramolecular Assembly of in situ Generated ZnS Nanoparticles. Langmuir, 2003, 19, 5904-5911.	3 . 5	71
529	Microwave-assisted synthesis of nanosized Bi2Se3. New Journal of Chemistry, 2003, 27, 1191.	2.8	62
530	Sonochemical Deposition of Air-Stable Iron Nanoparticles on Monodispersed Carbon Spherules. Chemistry of Materials, 2003, 15, 1378-1384.	6.7	87
531	A two-step process for the synthesis of MoTe2 nanotubes: combining a sonochemical technique with heat treatment. Journal of Materials Chemistry, 2003, 13, 2985.	6.7	26
532	An Aqueous Reduction Method To Synthesize Spinel-LiMn2O4Nanoparticles as a Cathode Material for Rechargeable Lithium-Ion Batteries. Chemistry of Materials, 2003, 15, 4211-4216.	6.7	60
533	Improved Silanization Modification of a Silica Surface and Its Application to the Preparation of a Silica-Supported Polyoxometalate Catalyst. Langmuir, 2003, 19, 10409-10413.	3 . 5	76
534	An Easy Sonochemical Route for the Encapsulation of Tetracycline In Bovine Serum Albumin Microspheres. Journal of the American Chemical Society, 2003, 125, 15712-15713.	13.7	60
535	Synthesis and characterization of Fe3Co7 alloy encapsulated in carbon nanoflasks. Journal of Materials Chemistry, 2003, 13, 663-665.	6.7	4
536	Sonochemical synthesis, structural and magnetic properties of air-stable Fe/Co alloy nanoparticles. New Journal of Chemistry, 2003, 27, 1194.	2.8	77
537	The sonochemical preparation of lamellar MoOx. Journal of Materials Chemistry, 2003, 13, 2851.	6.7	4
538	High loading of short W(Mo)S2 slabs inside the nanotubes of SBA-15. Promotion with Ni(Co) and performance in hydrodesulfurization and hydrogenation Studies in Surface Science and Catalysis, 2003, 146, 721-724.	1.5	11
539	Annealing study of Fe2O3 nanoparticles: Magnetic size effects and phase transformations. Journal of Applied Physics, 2002, 91, 4611-4616.	2.5	79
540	Sonochemistry as a tool for preparation of porous metal oxides. Pure and Applied Chemistry, 2002, 74, 1509-1517.	1.9	35

#	Article	IF	CITATIONS
541	Influence of pH on the Structure of the Aqueous Sonolysis Products of Manganese(III) Acetylacetonate. Journal of Materials Research, 2002, 17, 1706-1710.	2.6	5
542	Preparation and Characterization of Ag2E (E = Se, Te) Using the Sonochemically Assisted Polyol Method. Chemistry of Materials, 2002, 14 , 2094-2102.	6.7	63
543	Carbon Nanoflask:Â A Mechanistic Elucidation of Its Formation. Journal of Physical Chemistry B, 2002, 106, 9769-9776.	2.6	12
544	Suspensive Electrode Formation in Pulsed Sonoelectrochemical Synthesis of Silver Nanoparticles. Langmuir, 2002, 18, 4736-4740.	3.5	85
545	Sonochemical Deposition of Silver Nanoparticles on Silica Spheres. Langmuir, 2002, 18, 3352-3357.	3.5	407
546	Synthesis of Europium Oxide Nanorods by Ultrasound Irradiation. Journal of Physical Chemistry B, 2002, 106, 9737-9743.	2.6	113
547	Sonochemical Synthesis and Optical Properties of Europium Oxide Nanolayer Coated on Titania. Chemistry of Materials, 2002, 14, 3920-3924.	6.7	106
548	Sonochemical Synthesis of Mesoporous Iron Oxide and Accounts of Its Magnetic and Catalytic Properties. Journal of Physical Chemistry B, 2002, 106, 1878-1883.	2.6	188
549	Nanoparticles of SnO Produced by Sonochemistry as Anode Materials for Rechargeable Lithium Batteries. Chemistry of Materials, 2002, 14, 4155-4163.	6.7	265
550	Preparation, Texture, and Magnetic Properties of Carbon Nanotubes/Nanoparticles Doped with Cobalt. Journal of Physical Chemistry B, 2002, 106, 4079-4084.	2.6	28
551	Catalytic Transformation of Carbon Black to Carbon Nanotubes. Chemistry of Materials, 2002, 14, 4498-4501.	6.7	17
552	The sonochemical preparation of tungsten oxide nanoparticles Electronic supplementary information (ESI) available: Table S1; elemental analysis values of the product of W(CO)6 sonication in diphenylmethane and of samples heated at 550 ${\hat {\rm A}}^{\circ}{\rm C}$ in Ar and 1000 ${\hat {\rm A}}^{\circ}{\rm C}$ in Ar or air. Fig. S1: TEM image of the product heated at 1000 ${\hat {\rm A}}^{\circ}{\rm C}$. See http://www.rsc.org/suppdata/jm/b1/b106036h/. Journal of Materials	6.7	97
553	Chemistry, 2002, 12, 1107-1110. Sonochemical Synthesis of Mesoporous Tin Oxide. Langmuir, 2002, 18, 4160-4164.	3.5	102
554	S–S bonds are not required for the sonochemical formation of proteinaceous microspheres: the case of streptavidin. Biochemical Journal, 2002, 366, 705-707.	3.7	73
555	Sonochemical process for the preparation of $\hat{l}\pm$ -CuSe nanocrystals and flakes. Journal of Materials Chemistry, 2002, 12, 3723-3727.	6.7	69
556	Preparation of the Cd1–ÂxZnxSe alloys in the nanophase form using microwave irradiation. Journal of Materials Chemistry, 2002, 12, 339-344.	6.7	22
557	Preparation of nanosized cobalt hydroxides and oxyhydroxide assisted by sonication. Journal of Materials Chemistry, 2002, 12, 729-733.	6.7	145
558	Sonochemical synthesis of tungsten sulfide nanorodsElectronic supplementary information (ESI) available: TGA curve for the as-prepared product; AFM image of WS2 packs of nanorods. See http://www.rsc.org/suppdata/jm/b1/b110867k/. Journal of Materials Chemistry, 2002, 12, 1450-1452.	6.7	51

#	Article	IF	Citations
559	Preparation and characterization of FexOy–TiO2 via sonochemical synthesis. Materials Research Bulletin, 2002, 37, 1721-1735.	5.2	49
560	The Formation of Carbon-Coated MgO Cubes and Carbon Cubes. Advanced Materials, 2002, 14, 1169.	21.0	14
561	Acoustic Cavitation Leading to the Morphosynthesis of Mesoporous Silica Vesicles. Advanced Materials, 2002, 14, 1414-1418.	21.0	182
562	Preparation and characterization of nickel-polystyrene nanocomposite by ultrasound irradiation. Journal of Applied Polymer Science, 2002, 86, 160-165.	2.6	62
563	Sonochemical Synthesis of Cerium Oxide Nanoparticlesâ€"Effect of Additives and Quantum Size Effect. Journal of Colloid and Interface Science, 2002, 246, 78-84.	9.4	340
564	Microwave-Assisted Preparation, Morphological, and Photoacoustic Studies of the Na4SnSe4, K4Sn2Se6, and K4Sn3Se8, Zintl Molecular Sn–Se Oligomers. Journal of Solid State Chemistry, 2002, 165, 125-130.	2.9	16
565	Sonochemical synthesis and characterization of Ag2S/PVA and CuS/PVA nanocomposite. Ultrasonics Sonochemistry, 2002, 9, 65-70.	8.2	90
566	Forming multiwalled carbon nanotubes by the thermal decomposition of Mo(CO)6. Chemical Physics Letters, 2002, 357, 267-271.	2.6	12
567	INFLUENCE OF CRYSTALLITE SIZE ON THE PROPERTIES OF SnO ₂ NANOCRYSTALS., 2002, , .		1
568	Synthesis of morphologically controlled lanthanum carbonate particles using ultrasound irradiation. Journal of Materials Chemistry, 2001, 11, 869-873.	6.7	94
569	Fabrication of magnetite nanorods by ultrasound irradiation. Journal of Applied Physics, 2001, 89, 6324-6328.	2.5	158
570	Sonochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix. Journal of Materials Chemistry, 2001, 11, 1209-1213.	6.7	258
571	Synthesis of Nanosized α-Nickel Hydroxide by a Sonochemical Method. Nano Letters, 2001, 1, 263-266.	9.1	263
572	Sonochemical Preparation and Characterization of Nanocrystalline Copper Oxide Embedded in Poly(vinyl alcohol) and Its Effect on Crystal Growth of Copper Oxide. Langmuir, 2001, 17, 1406-1410.	3.5	277
573	Preparation and Characterization of Monodispersed YSZ Nanocrystals. Journal of Physical Chemistry B, 2001, 105, 4647-4652.	2.6	37
574	Preparing a Stable Colloidal Solution of Hydrous YSZ by Sonication. Langmuir, 2001, 17, 3223-3226.	3.5	18
575	Sonochemical synthesis of crystalline nanoporous zinc oxide spheres and their application in dye-sensitized solar cells. Israel Journal of Chemistry, 2001, 41, 51-54.	2.3	23
576	Sonochemical Synthesis of Nanophase Indium Sulfide. Chemistry of Materials, 2001, 13, 2195-2200.	6.7	70

#	Article	IF	CITATIONS
577	Controlling the Particle Size of Calcined SnO2 Nanocrystals. Nano Letters, 2001, 1, 723-726.	9.1	135
578	Sonochemical and Microwave-Assisted Preparations of PbTe and PbSe. A Comparative Study. Chemistry of Materials, 2001, 13, 1413-1419.	6.7	127
579	Sonochemical synthesis of titania whiskers andnanotubes. Chemical Communications, 2001, , 2616-2617.	4.1	237
580	Sonochemical Synthesis of Layered and Hexagonal Yttriumâ^'Zirconium Oxides. Chemistry of Materials, 2001, 13, 1248-1251.	6.7	43
581	Rapid Synthesis of Mesoporous Yttriumâ^'Zirconium Oxides with Ultrasound Irradiation. Langmuir, 2001, 17, 4131-4133.	3.5	30
582	The preparation of magnetic proteinaceous microspheres using the sonochemical method. Biochimica Et Biophysica Acta - General Subjects, 2001, 1527, 123-129.	2.4	28
583	Synthesis of X-ray amorphous silver nanoparticles by the pulse sonoelectrochemical method. Journal of Non-Crystalline Solids, 2001, 283, 231-236.	3.1	54
584	Mesoporous titanium dioxide: sonochemical synthesis and application in dye-sensitized solar cells. Journal of Materials Chemistry, 2001, 11, 521-526.	6.7	134
585	Microwave-assisted polyol method for the preparation of CdSe "nanoballs". Journal of Materials Chemistry, 2001, 11, 874-878.	6.7	116
586	Mesoporous iron–titania catalyst for cyclohexane oxidation. Chemical Communications, 2001, , 988-989.	4.1	78
587	Preparing Carbon Nanotubes and Nested Fullerenes from Supercritical CO2by a Chemical Reaction. Journal of the American Chemical Society, 2001, 123, 8624-8625.	13.7	100
588	Preparation of Cd1-xZnxSe Using Microwave-Assisted Polyol Synthesis. Inorganic Chemistry, 2001, 40, 4814-4815.	4.0	42
589	SnS2 anode for rechargeable lithium battery. Journal of Power Sources, 2001, 97-98, 198-200.	7.8	112
590	Oxidation of cyclohexane with nanostructured amorphous catalysts under mild conditions. Applied Catalysis A: General, 2001, 209, 125-130.	4.3	77
591	Using Sonochemical Methods for the Preparation of Mesoporous Materials and for the Deposition of Catalysts into the Mesopores. Chemistry - A European Journal, 2001, 7, 4546-4552. Synthesis of Highly Magnetic, Air-Stable Iron–Iron Carbide Nanocrystalline Particles by Using Power	3.3	70
592	Ultrasound A. Gedanken is grateful for the support of the German Ministry of Science through the Deutsche-Israeli DIP program. I. Felner and A. Gedanken thank also the Israeli Ministery of Science, Culture and Sport for an infrastructure grant. S. I. Nikitenko thanks the Bar-Ilan Research Authority for his fellowship. The authors also thank Dr. Shifra Hochberg for editorial assistance Angewandte	13.8	109
593	Chemie - International Edition, 2001, 40, 4447. Synthesis of Long Silver Nanowires from AgBr Nanocrystals. Advanced Materials, 2001, 13, 656-658.	21.0	150
594	Synthesis of carbon nanotubes from in situ generated cobalt nanoparticles and carbon monoxide. Chemical Physics Letters, 2001, 344, 256-262.	2.6	41

#	Article	IF	Citations
595	Ultrasonically Controlled Deposition–Precipitation. Journal of Catalysis, 2001, 201, 22-36.	6.2	155
596	Synthesis of Long Silver Nanowires from AgBr Nanocrystals. Advanced Materials, 2001, 13, 656-658.	21.0	5
597	The preparation of a polystyrene-iron composite by using ultrasound radiation. Polymer International, 2000, 49, 445-448.	3.1	41
598	A Novel Sonochemical Method for the Preparation of Nanophasic Sulfides: Synthesis of HgS and PbS Nanoparticles. Journal of Solid State Chemistry, 2000, 153, 342-348.	2.9	105
599	Preparation of Cu2â^'xTe and HgTe by Using Microwave Heating. Journal of Solid State Chemistry, 2000, 154, 530-534.	2.9	56
600	Sonochemical Synthesis of Mesoporous Titanium Oxide with Wormhole-like Framework Structures. Advanced Materials, 2000, 12, 1183-1186.	21.0	238
601	Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 286, 101-105.	5.6	278
602	Nanocrystalline γâ€Alumina Synthesized by Sonohydrolysis of Alkoxide Precursor in the Presence of Organic Acids: Structure and Morphological Properties. Journal of the American Ceramic Society, 2000, 83, 89-94.	3.8	40
603	Shape-Controlled Synthesis of Silver Nanoparticles by Pulse Sonoelectrochemical Methods. Langmuir, 2000, 16, 6396-6399.	3.5	476
604	A Novel Method for the Preparation of Lead Selenide:Â Pulse Sonoelectrochemical Synthesis of Lead Selenide Nanoparticles. Chemistry of Materials, 2000, 12, 143-147.	6.7	112
605	Reaction Pathways at the Iron–microspherical Silica Interface: Mechanistic Aspects of the Formation of Target Iron Oxide Phases. Journal of Materials Research, 2000, 15, 944-950.	2.6	29
606	Preparation and magnetic properties of nanosized amorphous ternary Fe–Ni–Co alloy powders. Journal of Materials Research, 2000, 15, 332-337.	2.6	20
607	Preparation and coating of molybdenum oxide on alumina submicrospheres by sonochemical method. Journal of Materials Research, 2000, 15, 393-401.	2.6	9
608	Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. Journal of Materials Chemistry, 2000, 10, 1125-1129.	6.7	179
609	Sonochemical synthesis of lead hydroxy bromide needles. Journal of Materials Chemistry, 2000, 10, 2143-2146.	6.7	28
610	Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates. Chemistry of Materials, 2000, 12, 2301-2305.	6.7	556
611	Time-dependence of luminescence of nanoparticles of Eu[sub 2]O[sub 3] and Tb[sub 2]O[sub 3] deposited on and doped in alumina. Applied Physics Letters, 2000, 77, 945.	3.3	52
612	Microwave Assisted Preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles. Journal of Physical Chemistry B, 2000, 104, 7344-7347.	2.6	327

#	Article	IF	Citations
613	Microwave assisted preparation of binary oxide nanoparticles. Journal of Materials Chemistry, 2000, 10, 1251-1254.	6.7	117
614	TEM, EELS and EFTEM characterization of nickel nanoparticles encapsulated in carbon. Journal of Materials Chemistry, 2000, 10, 715-721.	6.7	40
615	Synthesis of carbon nanoflasks. Journal of Materials Chemistry, 2000, 10, 1271-1272.	6.7	29
616	Synthesis of αâ€cobalt(ii) hydroxide using ultrasound radiation. Journal of Materials Chemistry, 2000, 10, 511-514.	6.7	76
617	Sonochemical synthesis of nanocrystallites of ruthenium sulfide, RuS1.7. Journal of Materials Chemistry, 2000, 10, 2769-2773.	6.7	21
618	General Sonochemical Method for the Preparation of Nanophasic Selenides:Â Synthesis of ZnSe Nanoparticles. Chemistry of Materials, 2000, 12, 73-78.	6.7	188
619	A New Fullerene-like Inorganic Compound Fabricated by the Sonolysis of an Aqueous Solution of TICl3. Journal of the American Chemical Society, 2000, 122, 4331-4334.	13.7	52
620	Sonohydrolysis of In3+lons:Â Formation of Needlelike Particles of Indium Hydroxide. Chemistry of Materials, 2000, 12, 1229-1233.	6.7	105
621	Preparation and Characteristics of Carbon Nanotubes Filled with Cobalt. Chemistry of Materials, 2000, 12, 2205-2211.	6.7	126
622	Amorphous iron oxide prepared by microwave heating. Journal of Materials Research, 2000, 15, 2176-2181.	2.6	42
623	Selective synthesis of anatase and rutile via ultrasound irradiation. Chemical Communications, 2000, , 1415-1416.	4.1	164
624	Elongated Copper Nanoparticles Coated with a Zwitterionic Surfactant. Journal of Physical Chemistry B, 2000, 104, 893-897.	2.6	62
625	Sonochemical Synthesis and Characterization of Nanocrystalline Paramelaconite in Polyaniline Matrix. Chemistry of Materials, 2000, 12, 3892-3895.	6.7	30
626	Sonochemical Preparation and Characterization of Europium Oxide Doped In and Coated On ZrO2and Yttrium-Stabilized Zirconium (YSZ). Journal of Physical Chemistry B, 2000, 104, 7057-7065.	2.6	54
627	Sonochemical Synthesis of SnO2 Nanoparticles and Their Preliminary Study as Li Insertion Electrodes. Chemistry of Materials, 2000, 12, 2557-2566.	6.7	331
628	Rapid synthesis of high quality MCM-41 silica with ultrasound radiation. Chemical Communications, 2000, , 2119-2120.	4.1	38
629	Preparation and characterization of iron-encapsulating carbon nanotubes and nanoparticles. Journal of Materials Chemistry, 2000, 10, 2502-2506.	6.7	50
630	The sonochemical preparation of amorphous silver nanoparticles. Journal of Materials Chemistry, 1999, 9, 1333-1335.	6.7	228

#	Article	IF	CITATIONS
631	Room Temperature Sonoelectrochemical Synthesis of Molybdenum Sulfide Fullereneâ€Like Nanoparticles. Advanced Materials, 1999, 11, 1010-1013.	21.0	67
632	New Method for Nanofabrication of Structures Analogous to "Core-Shell―Vesicles. Advanced Materials, 1999, 11, 1289-1292.	21.0	13
633	Catalytic Aerobic Oxidation of Cycloalkanes with Nanostructured Amorphous Metals and Alloys. Angewandte Chemie - International Edition, 1999, 38, 3521-3523.	13.8	106
634	Magnetic irreversibility and relaxation in assembly of ferromagnetic nanoparticles. Physical Review B, 1999, 59, 6956-6965.	3.2	95
635	Sonochemical Synthesis and Characterization of Iron Oxide Coated on Submicrospherical Alumina:  A Direct Observation of Interaction between Iron Oxide and Alumina. Journal of Physical Chemistry B, 1999, 103, 947-956.	2.6	44
636	Self-Assembled Monolayers of Alkanesulfonic and -phosphonic Acids on Amorphous Iron Oxide Nanoparticles. Langmuir, 1999, 15, 7111-7115.	3.5	251
637	Preparation and characterization of Ni/NiO composite using microwave irradiation and sonication. Scripta Materialia, 1999, 11, 415-420.	0.5	40
638	Coating Carboxylic Acids on Amorphous Iron Nanoparticles. Langmuir, 1999, 15, 1703-1708.	3. 5	149
639	Encapsulation of Nickel Nanoparticles in Carbon Obtained by the Sonochemical Decomposition of Ni(C8H12)2. Chemistry of Materials, 1999, 11, 1331-1335.	6.7	109
640	Pulsed Sonoelectrochemical Synthesis of Cadmium Selenide Nanoparticles. Journal of the American Chemical Society, 1999, 121, 10047-10052.	13.7	112
641	Sonochemical Preparation and Characterization of Eu2O3and Tb2O3Doped in and Coated on Silica and Alumina Nanoparticles. Journal of Physical Chemistry B, 1999, 103, 3361-3365.	2.6	176
642	Sonochemistry and Sonoluminescence in Simulated Ultrasound-assisted Lipoplasty Environment \hat{a}^{\dagger} , \hat{a}^{\dagger} , \hat{a}^{\dagger} , \hat{a}^{\dagger} , \hat{a}^{\dagger} Aesthetic Surgery Journal, 1999, 19, 205-212.	1.6	9
643	Sonochemical Hydrolysis of Ga3+Ions:Â Synthesis of Scroll-like Cylindrical Nanoparticles of Gallium Oxide Hydroxide. Journal of the American Chemical Society, 1999, 121, 4196-4199.	13.7	115
644	Sonochemical Coating of Nanosized Nickel on Alumina Submicrospheres and the Interaction between the Nickel and Nickel Oxide with the Substrate. Chemistry of Materials, 1999, 11, 2350-2359.	6.7	69
645	The preparation of metal–polymer composite materials using ultrasound radiation: Part II. Differences in physical properties of cobalt–polymer and iron–polymer composites. Journal of Materials Research, 1999, 14, 3913-3920.	2.6	29
646	Olympic Ring Formation from Newly Prepared Barium Hexaferrite Nanoparticle Suspension. Journal of Physical Chemistry B, 1999, 103, 3358-3360.	2.6	63
647	Surface Synthesis of Zinc Sulfide Nanoparticles on Silica Microspheres:  Sonochemical Preparation, Characterization, and Optical Properties. Chemistry of Materials, 1999, 11, 806-813.	6.7	272
648	Catalytic Aerobic Oxidation of Cycloalkanes with Nanostructured Amorphous Metals and Alloys., 1999, 38, 3521.		1

#	Article	IF	CITATIONS
649	Atomic force microscopy investigation of the surface topography and adhesion of nickel nanoparticles to submicrospherical silica. Chemical Physics Letters, 1998, 287, 461-467.	2.6	27
650	Synthesis, Characterization, and Properties of Metallic Copper Nanoparticles. Chemistry of Materials, 1998, 10, 1446-1452.	6.7	574
651	The "Melting Point―of Alkanethiol-Coated Amorphous Fe2O3 Nanoparticles. Advanced Materials, 1998, 10, 532-535.	21.0	23
652	Surfactant-Assisted Self-Organization of Cobalt Nanoparticles in a Magnetic Fluid. Advanced Materials, 1998, 10, 590-593.	21.0	35
653	Does the Self-Assembled Coating of Magnetic Nanoparticles Cover Individual Particles or Agglomerates?. Advanced Materials, 1998, 10, 1529-1532.	21.0	21
654	Sonochemical Preparation and Size-Dependent Properties of Nanostructured CoFe2O4Particles. Chemistry of Materials, 1998, 10, 3445-3450.	6.7	361
655	Sonochemical preparation and characterization of nanosized amorphous Co–Ni alloy powders. Journal of Materials Chemistry, 1998, 8, 769-773.	6.7	60
656	Organized Silica Microspheres Carrying Ferromagnetic Cobalt Nanoparticles as a Basis for Tip Arrays in Magnetic Force Microscopy. Journal of Physical Chemistry B, 1998, 102, 10234-10242.	2.6	21
657	Preparation of Luminescent Silicon Nanoparticles:Â A Novel Sonochemical Approach. Chemistry of Materials, 1998, 10, 3278-3281.	6.7	96
658	Sonochemistry under an Applied Magnetic Field:Â Determining the Shape of a Magnetic Particle. Journal of Physical Chemistry B, 1998, 102, 10165-10168.	2.6	36
659	A sonochemical approach to the surface synthesis of cadmium sulfide nanoparticles on submicron silica. Applied Physics Letters, 1998, 72, 2514-2516.	3.3	87
660	Coating nanosized iron oxide particles on submicrospherical alumina by a sonochemical method. Journal of Materials Chemistry, 1998, 8, 2167-2168.	6.7	14
661	The preparation of metal-polymer composite materials using ultrasound radiation. Journal of Materials Research, 1998, 13, 211-216.	2.6	26
662	Surfactant-Assisted Self-Organization of Cobalt Nanoparticles in a Magnetic Fluid. Advanced Materials, 1998, 10, 590-593.	21.0	4
663	Does the Self-Assembled Coating of Magnetic Nanoparticles Cover Individual Particles or Agglomerates?. Advanced Materials, 1998, 10, 1529-1532.	21.0	2
664	Synthesis of pure amorphous Fe ₂ O ₃ . Journal of Materials Research, 1997, 12, 402-406.	2.6	146
665	Preparation and characterization of amorphous nanometre sized Fe3O4powder. Journal of Materials Chemistry, 1997, 7, 1007-1009.	6.7	31
666	Ultrasound Driven Deposition and Reactivity of Nanophasic Amorphous Iron Clusters with Surface Silanols of Submicrospherical Silica. Chemistry of Materials, 1997, 9, 2996-3004.	6.7	52

#	Article	IF	Citations
667	Ultrasound driven aggregation and surface silanol modification in amorphous silica microspheres. Journal of Materials Research, 1997, 12, 3271-3277.	2.6	26
668	Sonochemical Deposition and Characterization of Nanophasic Amorphous Nickel on Silica Microspheres. Chemistry of Materials, 1997, 9, 546-551.	6.7	108
669	Sonochemical Preparation and Characterization of Ultrafine Chromium Oxide and Manganese Oxide Powders. Chemistry of Materials, 1997, 9, 3159-3163.	6.7	111
670	Sonochemical preparation of nanosized amorphous Fe-Ni alloys. Journal of Applied Physics, 1997, 81, 6901-6905.	2.5	81
671	Characterization of Sonochemically Prepared Unsupported and Silica-Supported Nanostructured Pentavalent Molybdenum Oxide. Journal of Physical Chemistry B, 1997, 101, 9495-9503.	2.6	91
672	Preparation of amorphous Fe2O3 powder with different particle sizes. Journal of Materials Chemistry, 1997, 7, 2447-2451.	6.7	67
673	Sonochemical Synthesis of Molybdenum Oxideâ^' and Molybdenum Carbideâ^'Silica Nanocomposites. Chemistry of Materials, 1997, 9, 3144-3154.	6.7	74
674	Sonochemical Preparation of Nanosized Amorphous NiFe2O4Particles. Journal of Physical Chemistry B, 1997, 101, 6409-6414.	2.6	279
675	In SituPreparation of Amorphous Carbon-Activated Palladium Nanoparticles. Journal of Physical Chemistry B, 1997, 101, 6834-6838.	2.6	87
676	Sonochemical preparation of amorphous nickel. Journal of Non-Crystalline Solids, 1996, 201, 159-162.	3.1	151
677	Controlling the particle size of amorphous iron nanoparticles. Journal of Materials Research, 1995, 10, 2952-2957.	2.6	71
678	Silicon Atoms as Intermediates in the Nonlinear Photochemistry of Si(CH ₃) _{4â€"n} Cl _n (n = 0, 1, 2, 3, 4) Compounds. Laser Chemistry, 1993, 13, 57-62.	0.5	0
679	Circular dichroism of molecules requiring two substituents for chirality. Molecular Physics, 1991, 72, 803-815.	1.7	1
680	Multiphoton ionization spectroscopy of organometallics: The Cr(CO)6, Cr(CO)3C6H6, Cr(C6H6)2 series. Journal of Chemical Physics, 1981, 75, 5215-5225.	3.0	72
681	Far vacuum ultraviolet absorption of solid hydrogen. Journal of Chemical Physics, 1973, 59, 2752-2753.	3.0	30
682	Extravalence molecular excitations in inert matrices. Journal of Chemical Physics, 1973, 58, 1178-1194.	3.0	68
683	Emission spectra of homonuclear diatomic rare gas molecules in solid neon. Journal of Chemical Physics, 1973, 59, 1630-1633.	3.0	19
684	Emission spectra of solid rareâ€gas alloys. Journal of Chemical Physics, 1973, 59, 5471-5483.	3.0	55

#	Article	IF	CITATIONS
685	Electronic Energy Transfer Phenomena in Rare Gases. Journal of Chemical Physics, 1972, 57, 3456-3469.	3.0	149
686	Synthesis of air-stable iron-iron carbide nanocrystalline particles showing very high saturation magnetization. , 0, , .		0
687	One Pot, Environmentally Benign, Thermal Reaction to Fabricate WSe ₂ and MoSe ₂ Nanoplates. Journal of Nano Research, 0, 3, 15-24.	0.8	6
688	Chiroptical properties of alcohols, ethers and peroxides. , 0, , 87-102.		1
689	Formation of Iron (III) Trimesate Xerogel by Ultrasonic Irradiation. European Journal of Inorganic Chemistry, 0, , .	2.0	4