Petra KovaÅÃ[™]kovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2990049/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advanced microextraction techniques for the analysis of amphetamines in human breast milk and their comparison with conventional methods. Journal of Pharmaceutical and Biomedical Analysis, 2022, 210, 114549.	2.8	8
2	The first chiral HPLC separation of dicarba-nido-undecarborate anions and their chromatographic behavior. Talanta, 2021, 222, 121652.	5.5	7
3	Electromembrane extraction of anthracyclines from plasma: Comparison with conventional extraction techniques. Talanta, 2021, 223, 121748.	5.5	10
4	Development of water-soluble prodrugs of the bisdioxopiperazine topoisomerase IIβ inhibitor ICRF-193 as potential cardioprotective agents against anthracycline cardiotoxicity. Scientific Reports, 2021, 11, 4456.	3.3	6
5	Prodrug of ICRF-193 provides promising protective effects against chronic anthracycline cardiotoxicity in a rabbit model <i>in vivo</i> . Clinical Science, 2021, 135, 1897-1914.	4.3	8
6	The electromembrane extraction of pharmaceutical compounds from animal tissues. Analytica Chimica Acta, 2021, 1177, 338742.	5.4	6
7	Clinically Translatable Prevention of Anthracycline Cardiotoxicity by Dexrazoxane Is Mediated by Topoisomerase II Beta and Not Metal Chelation. Circulation: Heart Failure, 2021, 14, e008209.	3.9	24
8	Investigation of Structure-Activity Relationships of Dexrazoxane Analogs Reveals Topoisomerase II <i>β</i> Interaction as a Prerequisite for Effective Protection against Anthracycline Cardiotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2020, 373, 402-415.	2.5	14
9	UHPLC-MS/MS method for analysis of sobuzoxane, its active form ICRF-154 and metabolite EDTA-diamide and its application to bioactivation study. Scientific Reports, 2019, 9, 4524.	3.3	2
10	Novel SPME fibers based on a plastic support for determination of plasma protein binding of thiosemicarbazone metal chelators: a case example of DpC, an anti-cancer drug that entered clinical trials. Analytical and Bioanalytical Chemistry, 2019, 411, 2383-2394.	3.7	5
11	79â€Effective cardioprotection against anthracycline cardiotoxicity in isolated cardiomyocytes and rabbits is based on dexrazoxane interaction with topoisomerase II beta instead of iron chelation by its metabolite ADR-925. , 2019, , .		0
12	Pharmacokinetics of the Cardioprotective Drug Dexrazoxane and Its Active Metabolite ADR-925 with Focus on Cardiomyocytes and the Heart. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 433-446.	2.5	15
13	2,6-Dihydroxybenzaldehyde Analogues of the Iron Chelator Salicylaldehyde Isonicotinoyl Hydrazone: Increased Hydrolytic Stability and Cytoprotective Activity against Oxidative Stress. Chemical Research in Toxicology, 2018, 31, 1151-1163.	3.3	7
14	Structure–Activity Relationships of Nitro-Substituted Aroylhydrazone Iron Chelators with Antioxidant and Antiproliferative Activities. Chemical Research in Toxicology, 2018, 31, 435-446.	3.3	5
15	Investigation of novel dexrazoxane analogue JR-311 shows significant cardioprotective effects through topoisomerase llbeta but not its iron chelating metabolite. Toxicology, 2017, 392, 1-10.	4.2	25
16	Characterization of cytoprotective and toxic properties of iron chelator SIH, prochelator BSIH and their degradation products. Toxicology, 2016, 350-352, 15-24.	4.2	10
17	Zinc(II)–Thiosemicarbazone Complexes Are Localized to the Lysosomal Compartment Where They Transmetallate with Copper Ions to Induce Cytotoxicity. Journal of Medicinal Chemistry, 2016, 59, 4965-4984.	6.4	148
18	Aroylhydrazone iron chelators: Tuning antioxidant and antiproliferative properties by hydrazide modifications. European Journal of Medicinal Chemistry, 2016, 120, 97-110.	5.5	31

#	Article	IF	CITATIONS
19	Interface-free capillary electrophoresis-mass spectrometry system with nanospray ionization—Analysis of dexrazoxane in blood plasma. Journal of Chromatography A, 2016, 1466, 173-179.	3.7	20
20	Are cardioprotective effects of NO-releasing drug molsidomine translatable to chronic anthracycline cardiotoxicity settings?. Toxicology, 2016, 372, 52-63.	4.2	1
21	Cardioprotective effects of iron chelator HAPI and ROS-activated boronate prochelator BHAPI against catecholamine-induced oxidative cellular injury. Toxicology, 2016, 371, 17-28.	4.2	14
22	A UHPLC-UV-QTOF study on the stability of carfilzomib, a novel proteasome inhibitor. Journal of Pharmaceutical and Biomedical Analysis, 2016, 124, 365-373.	2.8	10
23	LC–UV/MS methods for the analysis of prochelator—Boronyl salicylaldehyde isonicotinoyl hydrazone (BSIH) and its active chelator salicylaldehyde isonicotinoyl hydrazone (SIH). Journal of Pharmaceutical and Biomedical Analysis, 2015, 105, 55-63.	2.8	13
24	In Vitro Characterization of the Pharmacological Properties of the Anti-Cancer Chelator, Bp4eT, and Its Phase I Metabolites. PLoS ONE, 2015, 10, e0139929.	2.5	7
25	Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarbazones demonstrate marked differences in pharmacology between the first and second generation lead agents. Oncotarget, 2015, 6, 42411-42428.	1.8	34
26	ANTHRACYCLINE CARDIOTOXICITY: THE PHARMACOKINETICS AND PHARMACODYNAMICS OF DEXRAZOXANE AND ITS OPEN RING METABOLITE. Heart, 2014, 100, A7.1-A7.	2.9	0
27	Structure-Activity Relationships of Novel Salicylaldehyde Isonicotinoyl Hydrazone (SIH) Analogs: Iron Chelation, Anti-Oxidant and Cytotoxic Properties. PLoS ONE, 2014, 9, e112059.	2.5	15
28	Zirconia-A stationary phase capable of the separation of polar markers of myocardial metabolism in hydrophilic interaction chromatography. Journal of Separation Science, 2014, 37, 1089-1093.	2.5	9
29	Deferoxamine but not Dexrazoxane Alleviates Liver Injury Induced by Endotoxemia in Rats. Shock, 2014, 42, 372-379.	2.1	21
30	Simultaneous determination of the novel thiosemicarbazone antiâ€cancer agent, Bp4eT, and its main phase I metabolites in plasma: Application to a pilot pharmacokinetic study in rats. Biomedical Chromatography, 2014, 28, 621-629.	1.7	7
31	Identification of in vitro metabolites of the novel anti-tumor thiosemicarbazone, DpC, using ultra-high performance liquid chromatography–quadrupole-time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 1651-1661.	3.7	6
32	Development of LC–MS/MS method for the simultaneous analysis of the cardioprotective drug dexrazoxane and its metabolite ADR-925 in isolated cardiomyocytes and cell culture medium. Journal of Pharmaceutical and Biomedical Analysis, 2013, 76, 243-251.	2.8	9
33	Oxidative Stress, Redox Signaling, and Metal Chelation in Anthracycline Cardiotoxicity and Pharmacological Cardioprotection. Antioxidants and Redox Signaling, 2013, 18, 899-929.	5.4	267
34	LC-MS/MS identification of the principal in vitro and in vivo phase I metabolites of the novel thiosemicarbazone anti-cancer drug, Bp4eT. Analytical and Bioanalytical Chemistry, 2012, 403, 309-321.	3.7	16
35	Methyl and ethyl ketone analogs of salicylaldehyde isonicotinoyl hydrazone: Novel iron chelators with selective antiproliferative action. Chemico-Biological Interactions, 2012, 197, 69-79.	4.0	41
36	Comparison of various iron chelators used in clinical practice as protecting agents against catecholamine-induced oxidative injury and cardiotoxicity. Toxicology, 2011, 289, 122-131	4.2	35

Ρετγα ΚοναÅ™ÃκονÃ;

#	Article	IF	CITATIONS
37	Iron chelation with salicylaldehyde isonicotinoyl hydrazone protects against catecholamine autoxidation and cardiotoxicity. Free Radical Biology and Medicine, 2011, 50, 537-549.	2.9	42
38	The retention behaviour of polar compounds on zirconia based stationary phases under hydrophilic interaction liquid chromatography conditions. Journal of Chromatography A, 2011, 1218, 6981-6986.	3.7	29
39	Synthesis and Initial <i>in Vitro</i> Evaluations of Novel Antioxidant Aroylhydrazone Iron Chelators with Increased Stability against Plasma Hydrolysis. Chemical Research in Toxicology, 2011, 24, 290-302.	3.3	52
40	Enhanced Topical and Transdermal Delivery of Antineoplastic and Antiviral Acyclic Nucleoside Phosphonate cPr-PMEDAP. Pharmaceutical Research, 2011, 28, 3105-3115.	3.5	10
41	Use of different stationary phases for separation of isoniazid, its metabolites and vitamin B6 forms. Journal of Separation Science, 2011, 34, 1357-1365.	2.5	12
42	Hydrophilic interaction liquid chromatography in the separation of a moderately lipophilic drug from its highly polar metabolites—the cardioprotectant dexrazoxane as a model case. Journal of Chromatography A, 2011, 1218, 416-426.	3.7	18
43	Development of an LC–MS/MS method for analysis of interconvertible Z/E isomers of the novel anticancer agent, Bp4eT. Analytical and Bioanalytical Chemistry, 2010, 397, 161-171.	3.7	10
44	Comparison of Clinically Used and Experimental Iron Chelators for Protection against Oxidative Stress-Induced Cellular Injury. Chemical Research in Toxicology, 2010, 23, 1105-1114.	3.3	61
45	Dimethylamino Acid Esters as Biodegradable and Reversible Transdermal Permeation Enhancers: Effects of Linking Chain Length, Chirality and Polyfluorination. Pharmaceutical Research, 2009, 26, 811-821.	3.5	31
46	Development and Validation of an LC–ESI-MS Ion-Trap Method for Analysis of Impurities in Transkarbam 12, a Novel Transdermal Accelerant. Chromatographia, 2009, 69, 977-983.	1.3	2
47	HPLC methods for determination of two novel thiosemicarbazone anti-cancer drugs (N4mT and) Tj ETQq1 Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 316-322.	1 0.784314 rgBT 2.3	/Overlock 1 19
48	HPLC-DAD and MS/MS analysis of novel drug candidates from the group of aromatic hydrazones revealing the presence of geometric isomers. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48, 295-302.	2.8	23
49	Determination of lipophilicity of novel potential antituberculotic agents using HPLC on monolithic stationary phase and theoretical calculations. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48, 310-314.	2.8	17
50	Investigation of the stability of aromatic hydrazones in plasma and related biological material. Journal of Pharmaceutical and Biomedical Analysis, 2008, 47, 360-370.	2.8	35
51	Development and validation of HPLC-DAD methods for the analysis of two novel iron chelators with potent anti-cancer activity. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 1343-1351.	2.8	11
52	HPLC study on stability of pyridoxal isonicotinoyl hydrazone. Journal of Pharmaceutical and Biomedical Analysis, 2006, 40, 105-112.	2.8	18
53	HPLC determination of a novel aroylhydrazone iron chelator (o-108) in rabbit plasma and its application to a pilot pharmacokinetic study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 838, 107-112.	2.3	14
54	Determination of the lipophilicity of potential antituberculotic compounds by RP-TLC. Journal of Planar Chromatography - Modern TLC, 2006, 19, 422-426.	1.2	10

Ρετγα ΚοναÅ™ÃκονÃ;

#	Article	IF	CITATIONS
55	Development of high-performance liquid chromatographic determination of salicylaldehyde isonicotinoyl hydrazone in rabbit plasma and application of this method to anin vivo study. Journal of Separation Science, 2005, 28, 1300-1306.	2.5	31
56	Chromatographic methods for the separation of biocompatible iron chelators from their synthetic precursors and iron chelates. Journal of Separation Science, 2004, 27, 1503-1510.	2.5	12
57	HPLC study of glimepiride under hydrolytic stress conditions. Journal of Pharmaceutical and Biomedical Analysis, 2004, 36, 205-209.	2.8	38
58	Photochemical stability of nimesulide. Journal of Pharmaceutical and Biomedical Analysis, 2003, 31, 827-832.	2.8	18