
## Andrew D Mesecar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2989430/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Research, 2015, 115, 21-38.                                                                                                    | 4.1  | 680       |
| 2  | Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 2020, 586, 113-119.                                                                                                                                           | 27.8 | 672       |
| 3  | The Papain-Like Protease of Severe Acute Respiratory Syndrome Coronavirus Has Deubiquitinating<br>Activity. Journal of Virology, 2005, 79, 15189-15198.                                                                                                 | 3.4  | 482       |
| 4  | Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt<br>binding to the Nrf2 domain Neh2. Proceedings of the National Academy of Sciences of the United<br>States of America, 2005, 102, 10070-10075. | 7.1  | 420       |
| 5  | A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication.<br>Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16119-16124.                                        | 7.1  | 407       |
| 6  | Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5717-5722.                                | 7.1  | 356       |
| 7  | Structural Basis for Tumor Pyruvate Kinase M2 Allosteric Regulation and Catalysis,. Biochemistry, 2005, 44, 9417-9429.                                                                                                                                  | 2.5  | 347       |
| 8  | Severe Acute Respiratory Syndrome Coronavirus Papain-Like Protease Ubiquitin-Like Domain and<br>Catalytic Domain Regulate Antagonism of IRF3 and NF-κB Signaling. Journal of Virology, 2009, 83,<br>6689-6705.                                          | 3.4  | 325       |
| 9  | Deubiquitinating and Interferon Antagonism Activities of Coronavirus Papain-Like Proteases. Journal of Virology, 2010, 84, 4619-4629.                                                                                                                   | 3.4  | 267       |
| 10 | Phosphorylation of Serine 256 Suppresses Transactivation by FKHR (FOXO1) by Multiple Mechanisms.<br>Journal of Biological Chemistry, 2002, 277, 45276-45284.                                                                                            | 3.4  | 265       |
| 11 | Drug Development and Medicinal Chemistry Efforts toward SARSâ€Coronavirus and Covidâ€19<br>Therapeutics. ChemMedChem, 2020, 15, 907-932.                                                                                                                | 3.2  | 229       |
| 12 | Modification of Keap1 Cysteine Residues by Sulforaphane. Chemical Research in Toxicology, 2011, 24, 515-521.                                                                                                                                            | 3.3  | 224       |
| 13 | Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19. Nature Communications, 2021, 12, 6055.                                                                                        | 12.8 | 215       |
| 14 | Orbital Steering in the Catalytic Power of Enzymes: Small Structural Changes with Large Catalytic Consequences. Science, 1997, 277, 202-206.                                                                                                            | 12.6 | 214       |
| 15 | New Chemical Constituents ofEuphorbiaquinquecostataand Absolute Configuration Assignment by a<br>Convenient Mosher Ester Procedure Carried Out in NMR Tubes. Journal of Natural Products, 2002, 65,<br>1278-1282.                                       | 3.0  | 208       |
| 16 | Structural Basis for the Ubiquitin-Linkage Specificity and delSGylating Activity of SARS-CoV Papain-Like<br>Protease. PLoS Pathogens, 2014, 10, e1004113.                                                                                               | 4.7  | 199       |
| 17 | MERS-CoV papain-like protease has deISGylating and deubiquitinating activities. Virology, 2014, 450-451, 64-70.                                                                                                                                         | 2.4  | 198       |
| 18 | Black Cohosh Acts as a Mixed Competitive Ligand and Partial Agonist of the Serotonin Receptor.<br>Journal of Agricultural and Food Chemistry, 2003, 51, 5661-5670.                                                                                      | 5.2  | 185       |

| #  | Article                                                                                                                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Xanthohumol Isolated from Humulus lupulus Inhibits Menadione-Induced DNA Damage through<br>Induction of Quinone Reductase. Chemical Research in Toxicology, 2005, 18, 1296-1305.                                                                                                                                                                             | 3.3  | 183       |
| 20 | X-ray Structural and Biological Evaluation of a Series of Potent and Highly Selective Inhibitors of<br>Human Coronavirus Papain-like Proteases. Journal of Medicinal Chemistry, 2014, 57, 2393-2412.                                                                                                                                                         | 6.4  | 182       |
| 21 | Discovery, Synthesis, And Structure-Based Optimization of a Series of<br><i>N</i> -( <i>tert</i> -Butyl)-2-( <i>N</i> -arylamido)-2-(pyridin-3-yl) Acetamides (ML188) as Potent<br>Noncovalent Small Molecule Inhibitors of the Severe Acute Respiratory Syndrome Coronavirus<br>(SARS-CoV) 3CL Protease, Iournal of Medicinal Chemistry, 2013, 56, 534-546. | 6.4  | 178       |
| 22 | Silvestrol and Episilvestrol, Potential Anticancer Rocaglate Derivatives fromAglaia silvestris. Journal of Organic Chemistry, 2004, 69, 3350-3358.                                                                                                                                                                                                           | 3.2  | 175       |
| 23 | Sites of alkylation of human Keap1 by natural chemoprevention agents. Journal of the American<br>Society for Mass Spectrometry, 2007, 18, 2226-2232.                                                                                                                                                                                                         | 2.8  | 161       |
| 24 | Evaluating the 3C-like protease activity of SARS-Coronavirus: Recommendations for standardized assays for drug discovery. Virus Research, 2008, 133, 63-73.                                                                                                                                                                                                  | 2.2  | 161       |
| 25 | A new model for protein stereospecificity. Nature, 2000, 403, 614-615.                                                                                                                                                                                                                                                                                       | 27.8 | 155       |
| 26 | Pleiotropic mechanisms facilitated by resveratrol and its metabolites. Biochemical Journal, 2010, 429, 273-282.                                                                                                                                                                                                                                              | 3.7  | 154       |
| 27 | Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1. Biochemical Journal, 2009, 422, 171-180.                                                                                                                                                             | 3.7  | 141       |
| 28 | Nidovirus papain-like proteases: Multifunctional enzymes with protease, deubiquitinating and deISGylating activities. Virus Research, 2014, 194, 184-190.                                                                                                                                                                                                    | 2.2  | 140       |
| 29 | New Manzamine Alkaloids with Activity against Infectious and Tropical Parasitic Diseases from an<br>Indonesian Sponge. Journal of Natural Products, 2003, 66, 823-828.                                                                                                                                                                                       | 3.0  | 138       |
| 30 | Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease<br>(3CLpro). Journal of Biological Chemistry, 2015, 290, 19403-19422.                                                                                                                                                                                       | 3.4  | 134       |
| 31 | Severe Acute Respiratory Syndrome Coronavirus Papain-like Novel Protease Inhibitors: Design,<br>Synthesis, Proteinâ <sup>~</sup> Ligand X-ray Structure and Biological Evaluation. Journal of Medicinal Chemistry,<br>2010, 53, 4968-4979.                                                                                                                   | 6.4  | 129       |
| 32 | A small moleculeÂcompound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks<br>virus replication. Nature Communications, 2021, 12, 668.                                                                                                                                                                                              | 12.8 | 126       |
| 33 | Molecular mechanisms of natural products in chemoprevention: Induction of cytoprotective enzymes<br>by Nrf2. Molecular Nutrition and Food Research, 2008, 52 Suppl 1, S84-94.                                                                                                                                                                                | 3.3  | 117       |
| 34 | Catalytic Function and Substrate Specificity of the Papain-Like Protease Domain of nsp3 from the<br>Middle East Respiratory Syndrome Coronavirus. Journal of Virology, 2014, 88, 12511-12527.                                                                                                                                                                | 3.4  | 116       |
| 35 | Design and Synthesis of Peptidomimetic Severe Acute Respiratory Syndrome Chymotrypsin-like Protease<br>Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 6767-6771.                                                                                                                                                                                      | 6.4  | 114       |
| 36 | respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: Identification of ML300 and<br>noncovalent nanomolar inhibitors with an induced-fit binding. Bioorganic and Medicinal Chemistry<br>Letters, 2013, 23, 6172-6177.                                                                                                                              | 2.2  | 113       |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Structure-Based Design, Synthesis, and Biological Evaluation of a Series of Novel and Reversible<br>Inhibitors for the Severe Acute Respiratory Syndromeâ^'Coronavirus Papain-Like Protease. Journal of<br>Medicinal Chemistry, 2009, 52, 5228-5240. | 6.4 | 110       |
| 38 | Isolation, Structure Elucidation, and Absolute Configuration of 26-Deoxyactein<br>fromCimicifugaracemosaand Clarification of Nomenclature Associated with 27-Deoxyactein. Journal<br>of Natural Products, 2002, 65, 601-605.                         | 3.0 | 106       |
| 39 | Isolation and characterization of bioactive principles of the leaves and stems of Physalis philadelphica. Tetrahedron, 2002, 58, 3453-3466.                                                                                                          | 1.9 | 101       |
| 40 | Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV<br>3CLpro inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5684-5688.                                                           | 2.2 | 99        |
| 41 | Chimeric Exchange of Coronavirus nsp5 Proteases (3CLpro) Identifies Common and Divergent<br>Regulatory Determinants of Protease Activity. Journal of Virology, 2013, 87, 12611-12618.                                                                | 3.4 | 98        |
| 42 | Structure-based design, synthesis, and biological evaluation of peptidomimetic SARS-CoV 3CLpro inhibitors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5876-5880.                                                                          | 2.2 | 94        |
| 43 | New Sesquiterpenes fromLitseaverticillata. Journal of Natural Products, 2003, 66, 609-615.                                                                                                                                                           | 3.0 | 92        |
| 44 | Probing the structural requirements of non-electrophilic naphthalene-based Nrf2 activators.<br>European Journal of Medicinal Chemistry, 2015, 103, 252-268.                                                                                          | 5.5 | 88        |
| 45 | Structural Insights into the Interaction of Coronavirus Papain-Like Proteases and<br>Interferon-Stimulated Gene Product 15 from Different Species. Journal of Molecular Biology, 2017,<br>429, 1661-1683.                                            | 4.2 | 88        |
| 46 | Proteolytic Processing and Deubiquitinating Activity of Papain-Like Proteases of Human Coronavirus<br>NL63. Journal of Virology, 2007, 81, 6007-6018.                                                                                                | 3.4 | 87        |
| 47 | Prospective Type 1 and Type 2 Disulfides of Keap1 Protein. Chemical Research in Toxicology, 2008, 21, 2051-2060.                                                                                                                                     | 3.3 | 81        |
| 48 | Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2. Biochemical Journal, 2008, 413, 81-91.                                                                                | 3.7 | 81        |
| 49 | Coronaviruses Resistant to a 3C-Like Protease Inhibitor Are Attenuated for Replication and<br>Pathogenesis, Revealing a Low Genetic Barrier but High Fitness Cost of Resistance. Journal of<br>Virology, 2014, 88, 11886-11898.                      | 3.4 | 81        |
| 50 | Design, synthesis, and biological evaluation of resveratrol analogues as aromatase and quinone<br>reductase 2 inhibitors for chemoprevention of cancer. Bioorganic and Medicinal Chemistry, 2010, 18,<br>5352-5366.                                  | 3.0 | 79        |
| 51 | Identification of the Highly Reactive Cysteine 151 in the Chemopreventive Agent-Sensor Keap1 Protein is<br>Method-Dependent. Chemical Research in Toxicology, 2007, 20, 1878-1884.                                                                   | 3.3 | 75        |
| 52 | Structure-Based and Random Mutagenesis Approaches Increase the Organophosphate-Degrading<br>Activity of a Phosphotriesterase Homologue from Deinococcus radiodurans. Journal of Molecular<br>Biology, 2009, 393, 36-57.                              | 4.2 | 75        |
| 53 | Synthesis of Casimiroin and Optimization of Its Quinone Reductase 2 and Aromatase Inhibitory<br>Activities. Journal of Medicinal Chemistry, 2009, 52, 1873-1884.                                                                                     | 6.4 | 74        |
| 54 | Screening Natural Products for Inhibitors of Quinone Reductase-2 Using Ultrafiltration LCâ^'MS.<br>Analytical Chemistry, 2011, 83, 1048-1052.                                                                                                        | 6.5 | 70        |

| #  | Article                                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Potential Cancer Chemopreventive Constituents of the Seeds ofDipteryxodorata(Tonka Bean). Journal of Natural Products, 2003, 66, 583-587.                                                                                                                                       | 3.0  | 69        |
| 56 | Potential Chemopreventive Agents Based on the Structure of the Lead Compound<br>2-Bromo-1-hydroxyphenazine, Isolated from <i>Streptomyces</i> Species, Strain CNS284. Journal of<br>Medicinal Chemistry, 2010, 53, 8688-8699.                                                   | 6.4  | 69        |
| 57 | Bioactive Constituents of the Seeds of Brucea javanica. Planta Medica, 2002, 68, 730-733.                                                                                                                                                                                       | 1.3  | 67        |
| 58 | Targeting zoonotic viruses: Structure-based inhibition of the 3C-like protease from bat coronavirus<br>HKU4—The likely reservoir host to the human coronavirus that causes Middle East Respiratory<br>Syndrome (MERS). Bioorganic and Medicinal Chemistry, 2015, 23, 6036-6048. | 3.0  | 65        |
| 59 | Structural basis for thermostability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactonase from Geobacillus stearothermophilus.<br>Archives of Biochemistry and Biophysics, 2009, 488, 109-120.                   | 3.0  | 64        |
| 60 | Structural Basis for the Inhibition of CRISPR-Cas12a by Anti-CRISPR Proteins. Cell Host and Microbe, 2019, 25, 815-826.e4.                                                                                                                                                      | 11.0 | 63        |
| 61 | Lamiridosins, Hepatitis C Virus Entry Inhibitors from <i>Lamium album</i> . Journal of Natural<br>Products, 2009, 72, 2158-2162.                                                                                                                                                | 3.0  | 62        |
| 62 | Activity-guided isolation of cytotoxic constituents from the bark of Aglaia crassinervia collected in<br>Indonesia. Bioorganic and Medicinal Chemistry, 2006, 14, 960-972.                                                                                                      | 3.0  | 59        |
| 63 | Absorption and subcellular localization of lycopene in human prostate cancer cells. Molecular<br>Cancer Therapeutics, 2006, 5, 2879-2885.                                                                                                                                       | 4.1  | 57        |
| 64 | Screening Method for the Discovery of Potential Cancer Chemoprevention Agents Based on Mass Spectrometric Detection of Alkylated Keap1. Analytical Chemistry, 2005, 77, 6407-6414.                                                                                              | 6.5  | 56        |
| 65 | A Mouse Model for <i>Betacoronavirus</i> Subgroup 2c Using a Bat Coronavirus Strain HKU5 Variant.<br>MBio, 2014, 5, e00047-14.                                                                                                                                                  | 4.1  | 55        |
| 66 | Indole Chloropyridinyl Ester-Derived SARS-CoV-2 3CLpro Inhibitors: Enzyme Inhibition, Antiviral<br>Efficacy, Structure–Activity Relationship, and X-ray Structural Studies. Journal of Medicinal<br>Chemistry, 2021, 64, 14702-14714.                                           | 6.4  | 55        |
| 67 | Vitexlactam A, a novel labdane diterpene lactam from the fruits of Vitex agnus-castus. Tetrahedron<br>Letters, 2002, 43, 5131-5134.                                                                                                                                             | 1.4  | 54        |
| 68 | Resveratrol derivatives as promising chemopreventive agents with improved potency and selectivity.<br>Molecular Nutrition and Food Research, 2011, 55, 1249-1265.                                                                                                               | 3.3  | 52        |
| 69 | Structural and Functional Analysis of Two Glutamate Racemase Isozymes from Bacillus anthracis and<br>Implications for Inhibitor Design. Journal of Molecular Biology, 2007, 371, 1219-1237.                                                                                     | 4.2  | 50        |
| 70 | Murine Coronavirus Ubiquitin-Like Domain Is Important for Papain-Like Protease Stability and Viral<br>Pathogenesis. Journal of Virology, 2015, 89, 4907-4917.                                                                                                                   | 3.4  | 50        |
| 71 | Millisecond Laue structures of an enzyme–product complex using photocaged substrate analogs.<br>Nature Structural Biology, 1998, 5, 891-897.                                                                                                                                    | 9.7  | 49        |
| 72 | Metal-Ion-Mediated Allosteric Triggering of Yeast Pyruvate Kinase. 1. A Multidimensional Kinetic<br>Linked-Function Analysis. Biochemistry, 1997, 36, 6792-6802.                                                                                                                | 2.5  | 44        |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Antimycobacterial Naphthopyrones fromSenna obliqua⊥. Journal of Natural Products, 2004, 67, 225-227.                                                                                                                                   | 3.0 | 43        |
| 74 | Development and validation of a yeast high-throughput screen for inhibitors of Aβ42 oligomerization.<br>DMM Disease Models and Mechanisms, 2011, 4, 822-831.                                                                           | 2.4 | 43        |
| 75 | Decoupling deISGylating and deubiquitinating activities of the MERS virus papain-like protease.<br>Antiviral Research, 2020, 174, 104661.                                                                                              | 4.1 | 43        |
| 76 | Metal-Ion-Mediated Allosteric Triggering of Yeast Pyruvate Kinase 2. A Multidimensional<br>Thermodynamic Linked-Function Analysis. Biochemistry, 1997, 36, 6803-6813.                                                                  | 2.5 | 40        |
| 77 | Design and Synthesis of Aryl Ether Inhibitors of the <i>Bacillus Anthracis</i> Enoylâ€ACP Reductase.<br>ChemMedChem, 2008, 3, 1250-1268.                                                                                               | 3.2 | 40        |
| 78 | Constituents ofMusa×paradisiacaCultivar with the Potential To Induce the Phase II Enzyme, Quinone<br>Reductase. Journal of Agricultural and Food Chemistry, 2002, 50, 6330-6334.                                                       | 5.2 | 39        |
| 79 | Activity-Guided Isolation of Novel Norwithanolides from Deprea subtriflora with Potential Cancer<br>Chemopreventive Activity. Journal of Organic Chemistry, 2003, 68, 2350-2361.                                                       | 3.2 | 38        |
| 80 | Structural and mutational studies of organophosphorus hydrolase reveal a cryptic and functional allosteric-binding site. Archives of Biochemistry and Biophysics, 2005, 442, 169-179.                                                  | 3.0 | 38        |
| 81 | Structural Basis for Catalysis of a Tetrameric Class IIa Fructose 1,6-Bisphosphate Aldolase from<br>Mycobacterium tuberculosis. Journal of Molecular Biology, 2009, 386, 1038-1053.                                                    | 4.2 | 38        |
| 82 | Xâ€ray structural studies of quinone reductase 2 nanomolar range inhibitors. Protein Science, 2011, 20,<br>1182-1195.                                                                                                                  | 7.6 | 38        |
| 83 | New 3-O-Acyl Betulinic Acids fromStrychnos vanprukiiCraib. Journal of Natural Products, 2004, 67,<br>994-998.                                                                                                                          | 3.0 | 36        |
| 84 | Identification of a Glycogen Synthase Kinaseâ€3β Inhibitor that Attenuates Hyperactivity in CLOCK Mutant<br>Mice. ChemMedChem, 2011, 6, 1593-1602.                                                                                     | 3.2 | 36        |
| 85 | Design, Synthesis, and Biological Evaluation of Potent Quinoline and Pyrroloquinoline Ammosamide<br>Analogues as Inhibitors of Quinone Reductase 2. Journal of Medicinal Chemistry, 2012, 55, 367-377.                                 | 6.4 | 36        |
| 86 | Progress in Anti-SARS Coronavirus Chemistry, Biology and Chemotherapy. Annual Reports in Medicinal<br>Chemistry, 2006, 41, 183-196.                                                                                                    | 0.9 | 35        |
| 87 | Bioactive Compounds from the Fern <i>Lepisorus contortus</i> . Journal of Natural Products, 2011, 74, 129-136.                                                                                                                         | 3.0 | 34        |
| 88 | X-ray Structural and Functional Studies of the Three Tandemly Linked Domains of Non-structural<br>Protein 3 (nsp3) from Murine Hepatitis Virus Reveal Conserved Functions. Journal of Biological<br>Chemistry, 2015, 290, 25293-25306. | 3.4 | 34        |
| 89 | Regioselective Covalent Modification of Hemoglobin in Search of Antisickling Agents. Journal of<br>Medicinal Chemistry, 2003, 46, 936-953.                                                                                             | 6.4 | 33        |
| 90 | X-ray Structure and Enzymatic Activity Profile of a Core Papain-like Protease of MERS Coronavirus with utility for structure-based drug design. Scientific Reports, 2017, 7, 40292.                                                    | 3.3 | 33        |

| #   | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Isolation and absolute stereochemistry of coussaric acid, a new bioactive triterpenoid from the stems of Coussarea brevicaulis. Phytochemistry, 2003, 64, 293-302.                                                                                                   | 2.9  | 32        |
| 92  | <i>Bacillus anthracis o</i> -Succinylbenzoyl-CoA Synthetase: Reaction Kinetics and a Novel<br>Inhibitor Mimicking Its Reaction Intermediate. Biochemistry, 2008, 47, 12434-12447.                                                                                    | 2.5  | 32        |
| 93  | Isolation and evaluation of kaempferol glycosides from the fern Neocheiropteris palmatopedata.<br>Phytochemistry, 2010, 71, 641-647.                                                                                                                                 | 2.9  | 32        |
| 94  | Synthesis of 3-(3-aryl-pyrrolidin-1-yl)-5-aryl-1,2,4-triazines that have antibacterial activity and also inhibit inorganic pyrophosphatase. Bioorganic and Medicinal Chemistry, 2014, 22, 406-418.                                                                   | 3.0  | 32        |
| 95  | Conceptual design of a macromolecular neutron diffractometer (MaNDi) for the SNS. Journal of<br>Applied Crystallography, 2005, 38, 964-974.                                                                                                                          | 4.5  | 31        |
| 96  | Bruguiesulfurol, A New Sulfur Compound fromBruguiera gymnorrhiza. Planta Medica, 2006, 72,<br>255-260.                                                                                                                                                               | 1.3  | 31        |
| 97  | Design and synthesis of 2-pyridones as novel inhibitors of the Bacillus anthracis enoyl-ACP reductase.<br>Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3565-3569.                                                                                           | 2.2  | 31        |
| 98  | Miliusanes, A Class of Cytotoxic Agents fromMiliusa sinensis. Journal of Medicinal Chemistry, 2006,<br>49, 693-708.                                                                                                                                                  | 6.4  | 30        |
| 99  | Deubiquitinating Activity of the SARS-CoV Papain-Like Protease. Advances in Experimental Medicine and<br>Biology, 2006, 581, 37-41.                                                                                                                                  | 1.6  | 30        |
| 100 | Genetic interaction between yeast Saccharomyces cerevisiae release factors and the decoding region of 18 S rRNA. Journal of Molecular Biology, 2001, 305, 715-727.                                                                                                   | 4.2  | 28        |
| 101 | Sites of Binding and Orientation in a Four-Location Model for Protein Stereospecificity. IUBMB Life, 2000, 49, 457-466.                                                                                                                                              | 3.4  | 27        |
| 102 | Catechol Estrogen 4-Hydroxyequilenin Is a Substrate and an Inhibitor of<br>Catechol-O-Methyltransferase. Chemical Research in Toxicology, 2003, 16, 668-675.                                                                                                         | 3.3  | 25        |
| 103 | An ELISA method to measure inhibition of the COX enzymes. Nature Protocols, 2006, 1, 1915-1921.                                                                                                                                                                      | 12.0 | 25        |
| 104 | Kinetic and Structural Characterization of a Heterohexamer 4-Oxalocrotonate Tautomerase from<br><i>Chloroflexus aurantiacus</i> J-10-fl: Implications for Functional and Structural Diversity in the<br>Tautomerase Superfamily,. Biochemistry, 2010, 49, 5016-5027. | 2.5  | 25        |
| 105 | Synthesis of novel ĐœĐ¢3 receptor ligands via an unusual Knoevenagel condensation. Bioorganic and<br>Medicinal Chemistry Letters, 2012, 22, 7578-7581.                                                                                                               | 2.2  | 25        |
| 106 | A 2.2â€Ã resolution structure of the USP7 catalytic domain in a new space group elaborates upon<br>structural rearrangements resulting from ubiquitin binding. Acta Crystallographica Section F,<br>Structural Biology Communications, 2014, 70, 283-287.            | 0.8  | 25        |
| 107 | Kinetic, Thermodynamic, and Structural Insight into the Mechanism of Phosphopantetheine<br>Adenylyltransferase from Mycobacterium tuberculosis. Journal of Molecular Biology, 2010, 404,<br>202-219.                                                                 | 4.2  | 24        |
| 108 | Design, synthesis, biological and structural evaluation of functionalized resveratrol analogues as inhibitors of quinone reductase 2. Bioorganic and Medicinal Chemistry, 2013, 21, 6022-6037.                                                                       | 3.0  | 24        |

| #   | Article                                                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Cholesterol Sulfonation Enzyme, SULT2B1b, Modulates AR and Cell Growth Properties in Prostate Cancer. Molecular Cancer Research, 2016, 14, 776-786.                                                                                                                                                                          | 3.4 | 24        |
| 110 | Natural product leads for drug discovery: Isolation, synthesis and biological evaluation of<br>6-cyano-5-methoxyindolo[2,3-a]carbazole based ligands as antibacterial agents. Bioorganic and<br>Medicinal Chemistry, 2009, 17, 7126-7130.                                                                                    | 3.0 | 23        |
| 111 | Enzyme Architecture: The Effect of Replacement and Deletion Mutations of Loop 6 on Catalysis by Triosephosphate Isomerase. Biochemistry, 2014, 53, 3486-3501.                                                                                                                                                                | 2.5 | 23        |
| 112 | Role of Lysine 240 in the Mechanism of Yeast Pyruvate Kinase Catalysis. Biochemistry, 1999, 38, 9137-9145.                                                                                                                                                                                                                   | 2.5 | 22        |
| 113 | Characterization of novel rad6/ubc2 ubiquitin-conjugating enzyme mutants in yeast. Current Genetics, 2000, 37, 221-233.                                                                                                                                                                                                      | 1.7 | 22        |
| 114 | A Universal, Fully Automated High Throughput Screening Assay for Pyrophosphate and Phosphate<br>Release from Enzymatic Reactions. Combinatorial Chemistry and High Throughput Screening, 2010, 13,<br>27-38.                                                                                                                 | 1.1 | 21        |
| 115 | Active Site Loop Dynamics of a Class IIa Fructose 1,6-Bisphosphate Aldolase from <i>Mycobacterium tuberculosis</i> . Biochemistry, 2013, 52, 912-925.                                                                                                                                                                        | 2.5 | 21        |
| 116 | Computational modeling of the bat <scp>HKU4</scp> coronavirus <scp>3CL<sup>pro</sup></scp><br>inhibitors as a tool for the development of antivirals against the emerging <scp>M</scp> iddle<br><scp>E</scp> ast respiratory syndrome ( <scp>MERS</scp> ) coronavirus. Journal of Molecular<br>Recognition, 2017, 30, e2644. | 2.1 | 21        |
| 117 | Structure-Guided Mutagenesis Alters Deubiquitinating Activity and Attenuates Pathogenesis of a<br>Murine Coronavirus. Journal of Virology, 2020, 94, .                                                                                                                                                                       | 3.4 | 20        |
| 118 | Screening for natural chemoprevention agents that modify human Keap1. Analytical Biochemistry, 2012, 421, 108-114.                                                                                                                                                                                                           | 2.4 | 19        |
| 119 | X-ray structure and inhibition of the feline infectious peritonitis virus 3C-like protease: Structural implications for drug design. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5072-5077.                                                                                                                        | 2.2 | 19        |
| 120 | An oxyanion-Hole selective serine protease inhibitor in complex with trypsin. Bioorganic and Medicinal Chemistry, 2002, 10, 41-46.                                                                                                                                                                                           | 3.0 | 18        |
| 121 | A Chimeric Virus-Mouse Model System for Evaluating the Function and Inhibition of Papain-Like<br>Proteases of Emerging Coronaviruses. Journal of Virology, 2014, 88, 11825-11833.                                                                                                                                            | 3.4 | 18        |
| 122 | Structure-based design, synthesis and biological evaluation of novel β-secretase inhibitors containing<br>a pyrazole or thiazole moiety as the P3 ligand. Bioorganic and Medicinal Chemistry Letters, 2015, 25,<br>668-672.                                                                                                  | 2.2 | 18        |
| 123 | Mn <sup>2+</sup> coordinates Cap-0-RNA to align substrates for efficient 2′- <i>O</i> -methyl transfer<br>by SARS-CoV-2 nsp16. Science Signaling, 2021, 14, .                                                                                                                                                                | 3.6 | 17        |
| 124 | Kinetic and X-Ray Structural Evidence for Negative Cooperativity in Substrate Binding to Nicotinate<br>Mononucleotide Adenylyltransferase (NMAT) from Bacillus anthracis. Journal of Molecular Biology,<br>2009, 385, 867-888.                                                                                               | 4.2 | 16        |
| 125 | Development of an efficient E. coli expression and purification system for a catalytically active,<br>human Cullin3–RINGBox1 protein complex and elucidation of its quaternary structure with Keap1.<br>Biochemical and Biophysical Research Communications, 2010, 400, 471-475.                                             | 2.1 | 16        |
| 126 | Desorption Electrospray Ionization Mass Spectrometry Assay for Labelâ€Free Characterization of SULT2B1b Enzyme Kinetics. ChemMedChem, 2022, 17, .                                                                                                                                                                            | 3.2 | 16        |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Equine Catechol Estrogen 4-Hydroxyequilenin Is a More Potent Inhibitor of the Variant Form of Catechol-O-Methyltransferase. Chemical Research in Toxicology, 2004, 17, 512-520.                                             | 3.3 | 15        |
| 128 | Design, synthesis, and X-ray structural studies of BACE-1 inhibitors containing substituted<br>2-oxopiperazines as P1′-P2′ ligands. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2432-2438.                        | 2.2 | 14        |
| 129 | Use of molecular modeling, docking, and 3D-QSAR studies for the determination of the binding mode<br>of benzofuran-3-yl-(indol-3-yl)maleimides as GSK-3β inhibitors. Journal of Molecular Modeling, 2009, 15,<br>1463-1479. | 1.8 | 13        |
| 130 | X-Ray Structure and Inhibition of 3C-like Protease from Porcine Epidemic Diarrhea Virus. Scientific Reports, 2016, 6, 25961.                                                                                                | 3.3 | 12        |
| 131 | Design of potent and highly selective inhibitors for human β-secretase 2 (memapsin 1), a target for type<br>2 diabetes. Chemical Science, 2016, 7, 3117-3122.                                                               | 7.4 | 11        |
| 132 | Development of an Efficient Enzyme Production and Structure-Based Discovery Platform for BACE1<br>Inhibitors. Biochemistry, 2019, 58, 4424-4435.                                                                            | 2.5 | 10        |
| 133 | Highly Selective and Potent Human βâ€Secretaseâ€2 (BACE2) Inhibitors against Typeâ€2 Diabetes: Design,<br>Synthesis, Xâ€ray Structure and Structure–Activity Relationship Studies. ChemMedChem, 2019, 14,<br>545-560.       | 3.2 | 10        |
| 134 | Viral destruction of cell surface receptors: Fig. 1 Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8807-8808.                                                                  | 7.1 | 9         |
| 135 | Chloropyridinyl Esters of Nonsteroidal Anti-Inflammatory Agents and Related Derivatives as Potent SARS-CoV-2 3CL Protease Inhibitors. Molecules, 2021, 26, 5782.                                                            | 3.8 | 9         |
| 136 | Design, synthesis, and evaluation of oxyanion-hole selective inhibitor substituents for the S1 subsite of factor Xa. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5165-5170.                                       | 2.2 | 8         |
| 137 | Steady-state kinetic studies reveal that the anti-cancer target Ubiquitin-Specific Protease 17 (USP17) is a highly efficient deubiquitinating enzyme. Archives of Biochemistry and Biophysics, 2016, 612, 35-45.            | 3.0 | 7         |
| 138 | Cholesterol Sulfotransferase SULT2B1b Modulates Sensitivity to Death Receptor Ligand TNFα in<br>Castration-Resistant Prostate Cancer. Molecular Cancer Research, 2019, 17, 1253-1263.                                       | 3.4 | 7         |
| 139 | The structures of T87I phosphono-CheY and T87I/Y106W phosphono-CheY help to explain their binding affinities to the FliM and CheZ peptides. Archives of Biochemistry and Biophysics, 2008, 479, 105-113.                    | 3.0 | 6         |
| 140 | A Structure-Based Discovery Platform for BACE2 and the Development of Selective BACE Inhibitors.<br>ACS Chemical Neuroscience, 2021, 12, 581-588.                                                                           | 3.5 | 4         |
| 141 | Design, synthesis, X-ray studies, and biological evaluation of novel BACE1 inhibitors with bicyclic isoxazoline carboxamides as the P3 ligand. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2605-2610.             | 2.2 | 3         |
| 142 | Structural and mechanistic analysis oftrans-3-chloroacrylic acid dehalogenase activity. Acta<br>Crystallographica Section D: Biological Crystallography, 2008, 64, 1277-1282.                                               | 2.5 | 2         |
| 143 | Coronavirus Papain-like Peptidases. , 2013, , 2195-2199.                                                                                                                                                                    |     | 1         |
| 144 | Design, Syntheis, and Evaluation of Oxyanion-Hole Selective Inhibitor Substituents for the S1 Subsite of Factor Xa ChemInform, 2005, 36, no.                                                                                | 0.0 | 0         |

| #   | Article                                                                                                                                             | IF | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|
| 145 | Abstract A58: Cul3â€mediated Nrf2 ubiquitination and ARE activation are dependent on the partial molar volume at position 151 of Keap1. , 2010, , . |    | 0         |