Shuya Fukai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2989376/publications.pdf

Version: 2024-02-01

71102 74163 5,965 93 41 75 citations h-index g-index papers 95 95 95 9529 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Neurexins play a crucial role in cerebellar granule cell survival by organizing autocrine machinery for neurotrophins. Cell Reports, 2022, 39, 110624.	6.4	8
2	Roles of type IIa receptor protein tyrosine phosphatases as synaptic organizers. FEBS Journal, 2021, 288, 6913-6926.	4.7	15
3	Canonical versus non-canonical transsynaptic signaling of neuroligin 3 tunes development of sociality in mice. Nature Communications, 2021, 12, 1848.	12.8	19
4	Structural basis for specific recognition of K6-linked polyubiquitin chains by the TAB2 NZF domain. Biophysical Journal, 2021, 120, 3355-3362.	0.5	6
5	LGI1–ADAM22–MAGUK configures transsynaptic nanoalignment for synaptic transmission and epilepsy prevention. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	49
6	14-3-3 proteins stabilize LGI1-ADAM22 levels to regulate seizure thresholds in mice. Cell Reports, 2021, 37, 110107.	6.4	10
7	Insights into the mechanisms of epilepsy from structural biology of LGI1–ADAM22. Cellular and Molecular Life Sciences, 2020, 77, 267-274.	5.4	26
8	Subquinocin, a small molecule inhibitor of CYLD and USP-family deubiquitinating enzymes, promotes NF-l ^o B signaling. Biochemical and Biophysical Research Communications, 2020, 524, 1-7.	2.1	20
9	A <scp>SNARE</scp> geranylgeranyltransferase essential for the organization of the Golgi apparatus. EMBO Journal, 2020, 39, e104120.	7.8	41
10	A Human DUB Protein Array for Clarification of Linkage Specificity of Polyubiquitin Chain and Application to Evaluation of Its Inhibitors. Biomedicines, 2020, 8, 152.	3.2	17
11	Molecular bases for HOIPINs-mediated inhibition of LUBAC and innate immune responses. Communications Biology, 2020, 3, 163.	4.4	38
12	Structural insights into selective interaction between type IIa receptor protein tyrosine phosphatases and Liprin- $\hat{l}\pm$. Nature Communications, 2020, 11, 649.	12.8	12
13	Structural insights into leucine-rich repeat-containing synaptic cleft molecules. Current Opinion in Structural Biology, 2019, 54, 68-77.	5.7	6
14	Structural basis of ubiquitin recognition by the winged-helix domain of Cockayne syndrome group B protein. Nucleic Acids Research, 2019, 47, 3784-3794.	14.5	17
15	Structural insights into ubiquitin recognition and Ufd1 interaction of Npl4. Nature Communications, 2019, 10, 5708.	12.8	28
16	Structural basis of guanine nucleotide exchange for Rab11 by SH3BP5. Life Science Alliance, 2019, 2, e201900297.	2.8	7
17	Structural basis of epilepsy-related ligand–receptor complex LGI1–ADAM22. Nature Communications, 2018, 9, 1546.	12.8	54
18	Structural basis of trans-synaptic interactions between PTPδ and SALMs for inducing synapse formation. Nature Communications, 2018, 9, 269.	12.8	33

#	Article	IF	CITATIONS
19	Structural insights into two distinct binding modules for Lys63-linked polyubiquitin chains in RNF168. Nature Communications, 2018, 9, 170.	12.8	21
20	Structural insights into modulation and selectivity of transsynaptic neurexin–LRRTM interaction. Nature Communications, 2018, 9, 3964.	12.8	29
21	Structural insights into ubiquitin phosphorylation by PINK1. Scientific Reports, 2018, 8, 10382.	3.3	35
22	Crystal structure of the central and the C-terminal RNase domains of colicin D implicated its translocation pathway through inner membrane of target cell. Journal of Biochemistry, 2018, 164, 329-339.	1.7	6
23	Structural basis of the interaction between Topoisomerase $III\hat{I}^2$ and the TDRD3 auxiliary factor. Scientific Reports, 2017, 7, 42123.	3.3	20
24	Structural basis for specific cleavage of Lys6-linked polyubiquitin chains by USP30. Nature Structural and Molecular Biology, 2017, 24, 911-919.	8.2	61
25	Structural basis for CRMP2-induced axonal microtubule formation. Scientific Reports, 2017, 7, 10681.	3.3	50
26	Crystal structure of Sec10, a subunit of the exocyst complex. Scientific Reports, 2017, 7, 40909.	3.3	14
27	Distinct Roles for the N- and C-terminal Regions of M-Sec in Plasma Membrane Deformation during Tunneling Nanotube Formation. Scientific Reports, 2016, 6, 33548.	3.3	41
28	Application of MultiBac System to Large Complexes. Springer Protocols, 2016, , 47-65.	0.3	0
29	Structure of Slitrk2–PTPδ complex reveals mechanisms for splicing-dependent trans-synaptic adhesion. Scientific Reports, 2015, 5, 9686.	3.3	46
30	Structural Basis for Ubiquitin Recognition by Ubiquitin-Binding Zinc Finger of FAAP20. PLoS ONE, 2015, 10, e0120887.	2.5	11
31	Structures of CYLD USP with Met1- or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Nature Structural and Molecular Biology, 2015, 22, 222-229.	8.2	105
32	Mechanisms of splicing-dependent trans-synaptic adhesion by PTPδ–IL1RAPL1/IL-1RAcP for synaptic differentiation. Nature Communications, 2015, 6, 6926.	12.8	54
33	Switching and emergence of CTL epitopes in HIV-1 infection. Retrovirology, 2014, 11, 38.	2.0	13
34	Core Structures of Ubiquitin Dictate Its Dynamics and Function. Journal of Molecular Biology, 2014, 426, 1367-1369.	4.2	2
35	Ubiquitin recognition by UBZ and UMI domains for DNA damage response. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1642-C1642.	0.1	0
36	Structure of TCR and antigen complexes at an immunodominant CTL epitope in HIV-1 infection. Scientific Reports, 2013, 3, 3097.	3.3	35

#	Article	IF	CITATIONS
37	Molecular Basis of Lys-63-linked Polyubiquitination Inhibition by the Interaction between Human Deubiquitinating Enzyme OTUB1 and Ubiquitin-conjugating Enzyme UBC13. Journal of Biological Chemistry, 2012, 287, 25860-25868.	3.4	61
38	Get1 Stabilizes an Open Dimer Conformation of Get3 ATPase by Binding Two Distinct Interfaces. Journal of Molecular Biology, 2012, 422, 366-375.	4.2	22
39	Structure and function of a membrane component SecDF that enhances protein export. Nature, 2011, 474, 235-238.	27.8	202
40	Specific recognition of linear ubiquitin chains by the Npl4 zinc finger (NZF) domain of the HOIL-1L subunit of the linear ubiquitin chain assembly complex. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20520-20525.	7.1	97
41	Structural insight into the membrane insertion of tailâ€anchored proteins by Get3. Genes To Cells, 2010, 15, 29-41.	1.2	51
42	Structural basis for the Rho- and phosphoinositide-dependent localization of the exocyst subunit Sec3. Nature Structural and Molecular Biology, 2010, 17, 180-186.	8.2	87
43	Structural Basis for Specific Recognition and Cleavage of Polyubiquitin Chains. Nihon Kessho Gakkaishi, 2010, 52, 20-24.	0.0	0
44	Structural basis for the membrane targeting of the exocyst complex. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s27-s27.	0.3	0
45	Tuberous Sclerosis Tumor Suppressor Complex-like Complexes Act as GTPase-activating Proteins for Ral GTPases. Journal of Biological Chemistry, 2009, 284, 21580-21588.	3.4	65
46	Crystal structure of the NEMO ubiquitinâ€binding domain in complex with Lys 63â€linked diâ€ubiquitin. FEBS Letters, 2009, 583, 3317-3322.	2.8	69
47	Crystallization and preliminary X-ray diffraction analysis of GCIP/HHM transcriptional regulator. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 21-24.	0.7	9
48	Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO Journal, 2009, 28, 2461-2468.	7.8	180
49	Mechanism for the definition of elongation and termination by the class II CCA-adding enzyme. EMBO Journal, 2009, 28, 3353-3365.	7.8	46
50	Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3. EMBO Journal, 2009, 28, 3903-3909.	7.8	118
51	Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature, 2008, 455, 358-362.	27.8	300
52	Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature, 2008, 455, 988-991.	27.8	206
53	Regulation of Platelet Dense Granule Secretion by the Ral GTPase-Exocyst Pathway. Journal of Biological Chemistry, 2008, 283, 166-174.	3.4	42
54	Biochemical Characterization of the Rho GTPase-regulated Actin Assembly by Diaphanous-related Formins, mDia1 and Daam1, in Platelets. Journal of Biological Chemistry, 2008, 283, 8746-8755.	3.4	55

#	Article	IF	CITATIONS
55	1P-033 Crystal structures of the cytosolic domain of the Mg^<2+> transporter MgtE(The 46th) Tj ETQq1 1 0.	.784314 rg 0.1	BT /Over <mark>lo</mark> c
56	S06A2 Structural insights into the chemical modification in non-coding RNAs(Structural Biology of) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
57	Crystal structure of the Sec4p{middle dot}Sec2p complex in the nucleotide exchanging intermediate state. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8305-8310.	7.1	50
58	Crystallization and crystallographic analysis of yeast Sec2p, a guanine nucleotide-exchange factor for the yeast Rab GTPase Sec4p. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 616-619.	0.7	2
59	Crystallization and preliminary X-ray diffraction analysis of the full-length Mg ²⁺ transporter MgtE. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 682-684.	0.7	9
60	Crystallization and preliminary X-ray diffraction analysis of the cytosolic domain of the Mg ²⁺ transporter MgtE. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 678-681.	0.7	8
61	Crystal structure of the MgtE Mg2+ transporter. Nature, 2007, 448, 1072-1075.	27.8	166
62	Crystal structure of human DAAM1 formin homology 2 domain. Genes To Cells, 2007, 12, 1255-1265.	1.2	41
63	Asymmetric Coiled-Coil Structure with Guanine Nucleotide Exchange Activity. Structure, 2007, 15, 245-252.	3.3	29
64	1P358 Structural analysis of the Mammalian Exocyst Complex(13. Membrane transport,Poster) Tj ETQq0 0 0 rgBT	/Oyerlock 0.1	10 Tf 50 38
65	1P014 Snapshots of tRNA sulfuration via an adenylated intermediate(1. Protein structure and dynamics) Tj ETQq1	1.9.78431	.4 rgBT /Ov
66	2P151 Crystallization and preliminary X-ray analysis of the bacterial membrane transporters(34.) Tj ETQq0 0 0 rgB 2006, 46, S333.		R 10 Tf 50 3 O
67	2P168 Structural Basis of RNA-Dependent Recruitment of Glutamine to the Genetic Code(35. RNA) Tj ETQq1 1 0.7	'84314 rgE O.1	BT /Overlock
68	Crystallization and preliminary X-ray analysis of the tRNA thiolation enzyme MnmA fromEscherichia colicomplexed with tRNAGlu. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 368-371.	0.7	19
69	Purification, crystallization and preliminary X-ray diffraction of SecDF, a translocon-associated membrane protein, fromThermus thermophilus. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 376-380.	0.7	22
70	Snapshots of tRNA sulphuration via an adenylated intermediate. Nature, 2006, 442, 419-424.	27.8	123
71	Complete crystallographic analysis of the dynamics of CCA sequence addition. Nature, 2006, 443, 956-960.	27.8	68
72	Crystal structures of leucyl/phenylalanyl-tRNA-protein transferase and its complex with an aminoacyl-tRNA analog. EMBO Journal, 2006, 25, 5942-5950.	7.8	54

#	Article	IF	CITATIONS
73	Structural Basis for Sulfur Relay to RNA Mediated by Heterohexameric TusBCD Complex. Structure, 2006, 14, 357-366.	3.3	44
74	Functional Categorization of the Conserved Basic Amino Acid Residues in TrmH (tRNA (Gm18)) Tj ETQq0 0 0 rgE	T /9.yerloo	ck 19 Tf 50 70
75	Structural Basis of RNA-Dependent Recruitment of Glutamine to the Genetic Code. Science, 2006, 312, 1950-1954.	12.6	80
76	Structural basis for anticodon recognition by methionyl-tRNA synthetase. Nature Structural and Molecular Biology, 2005, 12, 931-932.	8.2	67
77	Roles of Conserved Amino Acid Sequence Motifs in the SpoU (TrmH) RNA Methyltransferase Family. Journal of Biological Chemistry, 2005, 280, 10368-10377.	3.4	59
78	Structural basis for lysidine formation by ATP pyrophosphatase accompanied by a lysine-specific loop and a tRNA-recognition domain. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7487-7492.	7.1	47
79	Crystal Structures of the CP1 Domain from Thermus thermophilus Isoleucyl-tRNA Synthetase and Its Complex with I-Valine. Journal of Biological Chemistry, 2004, 279, 8396-8402.	3.4	50
80	A short peptide insertion crucial for angiostatic activity of human tryptophanyl-tRNA synthetase. Nature Structural and Molecular Biology, 2004, 11, 149-156.	8.2	69
81	Structural basis for template-independent RNA polymerization. Nature, 2004, 430, 700-704.	27.8	96
82	Deep Knot Structure for Construction of Active Site and Cofactor Binding Site of tRNA Modification Enzyme. Structure, 2004, 12, 593-602.	3.3	107
83	Structural basis of the interaction between RalA and Sec5, a subunit of the sec6/8 complex. EMBO Journal, 2003, 22, 3267-3278.	7.8	103
84	Mechanism of molecular interactions for tRNAVal recognition by valyl-tRNA synthetase. Rna, 2003, 9, 100-111.	3.5	59
85	Crystal Structure of the Complex of Human Epidermal Growth Factor and Receptor Extracellular Domains. Cell, 2002, 110, 775-787.	28.9	1,013
86	Crystal Structure of Archaeosine tRNA-guanine Transglycosylase. Journal of Molecular Biology, 2002, 318, 665-677.	4.2	59
87	Mutational Separation of Two Pathways for Editing by a Class I tRNA Synthetase. Molecular Cell, 2002, 9, 353-362.	9.7	71
88	Crystal Structure of the Homologous-Pairing Domain from the Human Rad52 Recombinase in the Undecameric Form. Molecular Cell, 2002, 10, 359-371.	9.7	210
89	Crystal Structure of Human AUH Protein, a Single-Stranded RNA Binding Homolog of Enoyl-CoA Hydratase. Structure, 2001, 9, 1253-1263.	3.3	31
90	Structural Basis for Double-Sieve Discrimination of L-Valine from L-Isoleucine and L-Threonine by the Complex of tRNAVal and Valyl-tRNA Synthetase. Cell, 2000, 103, 793-803.	28.9	268

Shuya Fukai

#	Article	IF	CITATIONS
91	Functional Structures of Class-I Aminoacyl-tRNA Synthetases. , 1999, , 149-158.		0
92	Enzyme Structure with Two Catalytic Sites for Double-Sieve Selection of Substrate. Science, 1998, 280, 578-582.	12.6	347
93	Features of Aminoacyl-tRNA Synthesis Unique to Archaea. , 0, , 198-208.		1