
## Michael J Keiser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2988925/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Relating protein pharmacology by ligand chemistry. Nature Biotechnology, 2007, 25, 197-206.                                                                                      | 17.5 | 1,722     |
| 2  | Predicting new molecular targets for known drugs. Nature, 2009, 462, 175-181.                                                                                                    | 27.8 | 1,474     |
| 3  | Large-scale prediction and testing of drug activity on side-effect targets. Nature, 2012, 486, 361-367.                                                                          | 27.8 | 782       |
| 4  | Complementarity Between a Docking and a High-Throughput Screen in Discovering New Cruzain<br>Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 4891-4905.                    | 6.4  | 199       |
| 5  | Quantifying biogenic bias in screening libraries. Nature Chemical Biology, 2009, 5, 479-483.                                                                                     | 8.0  | 198       |
| 6  | Quantifying the Relationships among Drug Classes. Journal of Chemical Information and Modeling, 2008, 48, 755-765.                                                               | 5.4  | 160       |
| 7  | Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nature Chemical<br>Biology, 2016, 12, 559-566.                                               | 8.0  | 124       |
| 8  | Interpretable classification of Alzheimer's disease pathologies with a convolutional neural network pipeline. Nature Communications, 2019, 10, 2173.                             | 12.8 | 116       |
| 9  | Chemical informatics and target identification in a zebrafish phenotypic screen. Nature Chemical<br>Biology, 2012, 8, 144-146.                                                   | 8.0  | 113       |
| 10 | The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key<br>Molecular Pathways in Neuropsychiatric Disorders. Cell, 2018, 174, 505-520. | 28.9 | 108       |
| 11 | Polygenic overlap between schizophrenia risk and antipsychotic response: a genomic medicine<br>approach. Lancet Psychiatry,the, 2016, 3, 350-357.                                | 7.4  | 107       |
| 12 | Learning Molecular Representations for Medicinal Chemistry. Journal of Medicinal Chemistry, 2020, 63, 8705-8722.                                                                 | 6.4  | 105       |
| 13 | Artificial Intelligence in Dermatology: A Primer. Journal of Investigative Dermatology, 2020, 140,<br>1504-1512.                                                                 | 0.7  | 100       |
| 14 | Comment on "Predicting reaction performance in C–N cross-coupling using machine learning―<br>Science, 2018, 362, .                                                               | 12.6 | 96        |
| 15 | The Chemical Basis of Pharmacology. Biochemistry, 2010, 49, 10267-10276.                                                                                                         | 2.5  | 93        |
| 16 | A Simple Representation of Three-Dimensional Molecular Structure. Journal of Medicinal Chemistry, 2017, 60, 7393-7409.                                                           | 6.4  | 72        |
| 17 | The Presynaptic Component of the Serotonergic System is Required for Clozapine's Efficacy.<br>Neuropsychopharmacology, 2011, 36, 638-651.                                        | 5.4  | 63        |
| 18 | Evolutionarily Conserved Roles for Blood-Brain Barrier Xenobiotic Transporters in Endogenous<br>Steroid Partitioning and Behavior. Cell Reports, 2017, 21, 1304-1316.            | 6.4  | 48        |

MICHAEL J KEISER

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Adversarial Controls for Scientific Machine Learning. ACS Chemical Biology, 2018, 13, 2819-2821.                                                                                                                                            | 3.4  | 47        |
| 20 | Prediction and Evaluation of Protein Farnesyltransferase Inhibition by Commercial Drugs. Journal of<br>Medicinal Chemistry, 2010, 53, 2464-2471.                                                                                            | 6.4  | 42        |
| 21 | Prediction and validation of enzyme and transporter off-targets for metformin. Journal of Pharmacokinetics and Pharmacodynamics, 2015, 42, 463-475.                                                                                         | 1.8  | 37        |
| 22 | Predicted Biological Activity of Purchasable Chemical Space. Journal of Chemical Information and Modeling, 2018, 58, 148-164.                                                                                                               | 5.4  | 35        |
| 23 | A Mapping of Drug Space from the Viewpoint of Small Molecule Metabolism. PLoS Computational Biology, 2009, 5, e1000474.                                                                                                                     | 3.2  | 34        |
| 24 | Leveraging Large-scale Behavioral Profiling in Zebrafish to Explore Neuroactive Polypharmacology.<br>ACS Chemical Biology, 2016, 11, 842-849.                                                                                               | 3.4  | 28        |
| 25 | Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation. Nature Communications, 2019, 10, 4078.                                                                       | 12.8 | 27        |
| 26 | Stress testing reveals gaps in clinic readiness of image-based diagnostic artificial intelligence models.<br>Npj Digital Medicine, 2021, 4, 10.                                                                                             | 10.9 | 25        |
| 27 | Validation of machine learning models to detect amyloid pathologies across institutions. Acta<br>Neuropathologica Communications, 2020, 8, 59.                                                                                              | 5.2  | 20        |
| 28 | Off-Target Networks Derived from Ligand Set Similarity. Methods in Molecular Biology, 2009, 575, 195-205.                                                                                                                                   | 0.9  | 20        |
| 29 | In Silico Molecular Comparisons of C. elegans and Mammalian Pharmacology Identify Distinct Targets<br>That Regulate Feeding. PLoS Biology, 2013, 11, e1001712.                                                                              | 5.6  | 18        |
| 30 | Adding Stochastic Negative Examples into Machine Learning Improves Molecular Bioactivity<br>Prediction. Journal of Chemical Information and Modeling, 2020, 60, 5957-5970.                                                                  | 5.4  | 16        |
| 31 | Deep learning from multiple experts improves identification of amyloid neuropathologies. Acta<br>Neuropathologica Communications, 2022, 10, 66.                                                                                             | 5.2  | 12        |
| 32 | Trans-channel fluorescence learning improves high-content screening for Alzheimer's disease<br>therapeutics. Nature Machine Intelligence, 2022, 4, 583-595.                                                                                 | 16.0 | 9         |
| 33 | A pilot study of the pharmacodynamic impact of SSRI drug selection and beta-1 receptor genotype<br>(ADRB1) on cardiac vital signs in depressed patients: a novel pharmacogenetic approach.<br>Psychopharmacology Bulletin, 2010, 43, 11-22. | 0.0  | 6         |
| 34 | Chemoinformatic Approaches to Target Identification. RSC Drug Discovery Series, 2012, , 50-65.                                                                                                                                              | 0.3  | 0         |