Michael J Monteiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/298811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperatureâ€Ðirected Formation of Anisotropic Kettlebell and Tadpole Nanostructures in the Absence of a Swellingâ€Induced Solvent. Angewandte Chemie - International Edition, 2022, , .	13.8	3
2	Nonionic Polymer with Flat Upper Critical Solution Temperature Behavior in Water. Biomacromolecules, 2022, 23, 174-181.	5.4	5
3	Ionic Effect on Electrochemical Behavior of Water-Soluble Radical Polyelectrolytes. Macromolecules, 2022, 55, 5733-5743.	4.8	5
4	Triazole-enabled small TEMPO cathodes for lithium-organic batteries. Energy Storage Materials, 2021, 35, 122-129.	18.0	17
5	Unravelling kinetic and mass transport effects on two-electron storage in radical polymer batteries. Journal of Materials Chemistry A, 2021, 9, 13071-13079.	10.3	21
6	Calcium-bisphosphonate Nanoparticle Platform as a Prolonged Nanodrug and Bone-Targeted Delivery System for Bone Diseases and Cancers. ACS Applied Bio Materials, 2021, 4, 2490-2501.	4.6	7
7	Mechanisms of cancer stem cell senescence: Current understanding and future perspectives. Clinical and Experimental Pharmacology and Physiology, 2021, 48, 1185-1202.	1.9	16
8	Water-Borne Nanocoating for Rapid Inactivation of SARS-CoV-2 and Other Viruses. ACS Nano, 2021, 15, 14915-14927.	14.6	13
9	Replacing Cu(II)Br ₂ with Me ₆ -TREN in Biphasic Cu(0)/TREN Catalyzed SET-LRP Reveals the Mixed-Ligand Effect. Biomacromolecules, 2020, 21, 250-261.	5.4	26
10	UV-Cross-Linked Polymer Nanostructures with Preserved Asymmetry and Surface Functionality. Biomacromolecules, 2020, 21, 133-142.	5.4	13
11	Temperature-Induced Formation of Uniform Polymer Nanocubes Directly in Water. Biomacromolecules, 2020, 21, 1700-1708.	5.4	5
12	Cancer stemness contributes to cluster formation of colon cancer cells and high metastatic potentials. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 838-847.	1.9	23
13	Perfecting self-organization of covalent and supramolecular mega macromolecules via sequence-defined and monodisperse components. Polymer, 2020, 211, 123252.	3.8	11
14	Analysis of cyclic polymer purity by size exclusion chromatography: a model system. Polymer Chemistry, 2020, 11, 7354-7361.	3.9	9
15	Monodisperse Macromolecules by Self-Interrupted Living Polymerization. Journal of the American Chemical Society, 2020, 142, 15265-15270.	13.7	37
16	Polymer Colloids: Synthesis Fundamentals to Applications. Biomacromolecules, 2020, 21, 4377-4378.	5.4	2
17	Precise and Accelerated Polymer Synthesis via Mixed-Ligand and Mixed-RAFT Agents. CheM, 2020, 6, 1203-1204.	11.7	3
18	Therapeutic Delivery of Polymeric Tadpole Nanostructures with High Selectivity to Triple Negative Breast Cancer Cells. Biomacromolecules, 2020, 21, 4457-4468.	5.4	14

#	Article	IF	CITATIONS
19	Programmable Disassembly of Polymer Nanoparticles through Surfactant Interactions. Industrial & Engineering Chemistry Research, 2019, 58, 21003-21013.	3.7	6
20	Conjugated Nitroxide Radical Polymers: Synthesis and Application in Flexible Energy Storage Devices. ACS Applied Materials & Interfaces, 2019, 11, 7096-7103.	8.0	32
21	Fibronectin-conjugated thermoresponsive nanobridges generate three dimensional human pluripotent stem cell cultures for differentiation towards the neural lineages. Stem Cell Research, 2019, 38, 101441.	0.7	5
22	GRGDâ€decorated threeâ€dimensional nanoworm hydrogels for culturing human embryonic stem cells. Journal of Polymer Science Part A, 2019, 57, 1956-1963.	2.3	6
23	Insluin and epithelial growth factor (EGF) promote programmed death ligand 1(PD-L1) production and transport in colon cancer stem cells. BMC Cancer, 2019, 19, 153.	2.6	35
24	Biodistribution of PNIPAM-Coated Nanostructures Synthesized by the TDMT Method. Biomacromolecules, 2019, 20, 625-634.	5.4	15
25	Segmental Dynamics in Multicyclic Polystyrenes. Macromolecules, 2018, 51, 1488-1497.	4.8	24
26	Influence of Constraints within a Cyclic Polymer on Solution Properties. Biomacromolecules, 2018, 19, 616-625.	5.4	30
27	Effect of heteroatom and functionality substitution on the oxidation potential of cyclic nitroxide radicals: role of electrostatics in electrochemistry. Physical Chemistry Chemical Physics, 2018, 20, 2606-2614.	2.8	40
28	Methods for Expansion of Three-Dimensional Cultures of Human Embryonic Stem Cells Using a Thermoresponsive Polymer. Tissue Engineering - Part C: Methods, 2018, 24, 146-157.	2.1	6
29	Formation of hollow MoS2/carbon microspheres for high capacity and high rate reversible alkali-ion storage. Journal of Materials Chemistry A, 2018, 6, 8280-8288.	10.3	62
30	An In-Depth Analysis of the Last Twenty Years About IPv6 Security. , 2018, , .		3
31	Uniform Symmetric and Asymmetric Polymer Nanostructures via Directed Chain Organization. Biomacromolecules, 2018, 19, 4703-4709.	5.4	15
32	Viscoelastic Properties of Unentangled Multicyclic Polystyrenes. Polymers, 2018, 10, 973.	4.5	9
33	Order from disorder through dissipation of free energy. Nature Nanotechnology, 2018, 13, 771-772.	31.5	8
34	Molecular-level anchoring of polymer cathodes on carbon nanotubes towards rapid-rate and long-cycle sodium-ion storage. Materials Chemistry Frontiers, 2018, 2, 1805-1810.	5.9	24
35	Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint. Microscopy and Microanalysis, 2018, 24, 318-322.	0.4	17
36	Liposomal formulation of polyacrylate-peptide conjugate as a new vaccine candidate against cervical cancer. Precision Nanomedicine, 2018, 1, 183-193.	0.8	8

#	Article	IF	CITATIONS
37	Investigating the affinity of poly tert -butyl acrylate toward Toll-Like Receptor 2. AIMS Allergy and Immunology, 2018, 2, 141-147.	0.5	6
38	The impact of the molecular weight on the electrochemical properties of poly(TEMPO methacrylate). Polymer Chemistry, 2017, 8, 1815-1823.	3.9	78
39	Dumbbellâ€5haped Biâ€component Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. Angewandte Chemie, 2017, 129, 8579-8583.	2.0	34
40	Dumbbellâ€ 5 haped Bi omponent Mesoporous Janus Solid Nanoparticles for Biphasic Interface Catalysis. Angewandte Chemie - International Edition, 2017, 56, 8459-8463.	13.8	204
41	Acetone–water biphasic mixtures as solvents for ultrafast SET-LRP of hydrophobic acrylates. Polymer Chemistry, 2017, 8, 3102-3123.	3.9	29
42	The stirring rate provides a dramatic acceleration of the ultrafast interfacial SET-LRP in biphasic acceleration of the ultrafast interfacial SET-LRP in biphasic acetonitrile–water mixtures. Polymer Chemistry, 2017, 8, 3405-3424.	3.9	26
43	Hierarchical Porous Yolk–Shell Carbon Nanosphere for Highâ€Performance Lithium–Sulfur Batteries. Particle and Particle Systems Characterization, 2017, 34, 1600281.	2.3	34
44	Pyrene-Functionalized PTMA by NRC for Greater π–π Stacking with rGO and Enhanced Electrochemical Properties. ACS Applied Materials & Interfaces, 2017, 9, 34900-34908.	8.0	60
45	Temperature-Directed Assembly of Stacked Toroidal Nanorattles. ACS Macro Letters, 2017, 6, 1223-1227.	4.8	22
46	Densely Packed Multicyclic Polymers. ACS Macro Letters, 2017, 6, 1036-1041.	4.8	15
47	Temperature-Directed Self-Assembly: from Tadpole to Multi-Arm Polymer Nanostructures Directly in Water. ACS Macro Letters, 2017, 6, 1047-1051.	4.8	14
48	Searching for efficient SET-LRP systems via biphasic mixtures of water with carbonates, ethers and dipolar aprotic solvents. Polymer Chemistry, 2017, 8, 5865-5874.	3.9	24
49	Conditions for multicompartment polymeric tadpoles via temperature directed self-assembly. Polymer Chemistry, 2017, 8, 5286-5294.	3.9	9
50	Drug resistance and cancer stem cells: the shared but distinct roles of hypoxiaâ€inducible factors <scp>HIF</scp> 1α and <scp>HIF</scp> 2α. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 153-161.	1.9	91
51	Synergistic inhibition of colon cancer cell growth with nanoemulsion-loaded paclitaxel and PI3K/mTOR dual inhibitor BEZ235 through apoptosis. International Journal of Nanomedicine, 2016, 11, 1947.	6.7	28
52	Sequence Control of Macromers via Iterative Sequential and Exponential Growth. Journal of the American Chemical Society, 2016, 138, 16600-16603.	13.7	49
53	Characterization of hetero-block copolymers by the log-normal distribution model. Polymer Chemistry, 2016, 7, 2992-3002.	3.9	7
54	Ultrafast SET-LRP of hydrophobic acrylates in multiphase alcohol–water mixtures. Polymer Chemistry, 2016, 7, 3608-3621.	3.9	40

#	Article	IF	CITATIONS
55	Linear and branched polyacrylates as a delivery platform for peptide-based vaccines. Therapeutic Delivery, 2016, 7, 601-609.	2.2	21
56	Precise grafting of macrocyclics and dendrons to a linear polymer chain. Polymer Chemistry, 2016, 7, 6598-6607.	3.9	9
57	RAFT-mediated emulsion polymerization of styrene with aÂthermoresponsive MacroCTA. Polymer, 2016, 106, 200-207.	3.8	10
58	Multiantigenic peptide–polymer conjugates as therapeutic vaccines against cervical cancer. Bioorganic and Medicinal Chemistry, 2016, 24, 4372-4380.	3.0	34
59	Stable organic radical polymers: synthesis and applications. Polymer Chemistry, 2016, 7, 5589-5614.	3.9	123
60	Yolk–Shell-Structured Nanoparticles: Synthesis, Surface Functionalization, and Their Applications in Nanomedicine. , 2016, , 61-106.		0
61	Ultrafast SET-LRP in biphasic mixtures of the non-disproportionating solvent acetonitrile with water. Polymer Chemistry, 2016, 7, 5930-5942.	3.9	29
62	The synergistic effect during biphasic SET-LRP in ethanol–nonpolar solvent–water mixtures. Polymer Chemistry, 2016, 7, 7230-7241.	3.9	27
63	Quantitative end-group functionalization of PNIPAM from aqueous SET-LRP <i>via in situ</i> reduction of Cu(<scp>ii</scp>) with NaBH ₄ . Polymer Chemistry, 2016, 7, 4802-4809.	3.9	23
64	SET-LRP of NIPAM in water via in situ reduction of Cu(<scp>ii</scp>) to Cu(0) with NaBH ₄ . Polymer Chemistry, 2016, 7, 933-939.	3.9	46
65	A synthetic strategy for carbon nanospheres impregnated with highly monodispersed metal nanoparticles. NPG Asia Materials, 2016, 8, e240-e240.	7.9	66
66	Peptidomimetic Star Polymers for Targeting Biological Ion Channels. PLoS ONE, 2016, 11, e0152169.	2.5	5
67	<scp>PI</scp> 3K/Akt/ <scp>mTOR</scp> pathway dual inhibitor <scp>BEZ</scp> 235 suppresses the stemness of colon cancer stem cells. Clinical and Experimental Pharmacology and Physiology, 2015, 42, 1317-1326.	1.9	76
68	Temperature-Directed Self-Assembly of Multifunctional Polymeric Tadpoles. Journal of the American Chemical Society, 2015, 137, 15652-15655.	13.7	33
69	Intracellular trafficking pathways for plasmid DNA complexed with highly efficient endosome escape polymers. BMC Proceedings, 2015, 9, .	1.6	2
70	Self-Adjuvanting Therapeutic Peptide-Based Vaccine Induce CD8 ⁺ Cytotoxic T Lymphocyte Responses in a Murine Human Papillomavirus Tumor Model. Current Drug Delivery, 2015, 12, 3-8.	1.6	24
71	One-Pot Orthogonal Copper-Catalyzed Synthesis and Self-Assembly of <scp>l</scp> -Lysine-Decorated Polymeric Dendrimers. Macromolecules, 2015, 48, 1688-1702.	4.8	34
72	An <scp>EGFR</scp> targeting nanoparticle self assembled from a thermoresponsive polymer. Journal of Chemical Technology and Biotechnology, 2015, 90, 1222-1229.	3.2	13

#	Article	IF	CITATIONS
73	Fitting molecular weight distributions using a log-normal distribution model. European Polymer Journal, 2015, 65, 197-201.	5.4	34
74	Photonic Nanosensor for Colorimetric Detection of Metal Ions. Analytical Chemistry, 2015, 87, 5101-5108.	6.5	82
75	Pd-complex driven formation of single-chain nanoparticles. Polymer Chemistry, 2015, 6, 4358-4365.	3.9	90
76	Aqueous SET-LRP catalyzed with "in situ―generated Cu(0) demonstrates surface mediated activation and bimolecular termination. Polymer Chemistry, 2015, 6, 2084-2097.	3.9	65
77	Temperature-Induced Gels from Worms Made by RAFT-Mediated Emulsion Polymerization. ACS Symposium Series, 2015, , 79-90.	0.5	3
78	Contact Lens Sensors in Ocular Diagnostics. Advanced Healthcare Materials, 2015, 4, 792-810.	7.6	361
79	Polyacrylate-Based Delivery System for Self-adjuvanting Anticancer Peptide Vaccine. Journal of Medicinal Chemistry, 2015, 58, 888-896.	6.4	56
80	Hierarchical mesoporous yolk–shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage. Chemical Communications, 2015, 51, 2518-2521.	4.1	151
81	Derivation of the molecular weight distributions from size exclusion chromatography. European Polymer Journal, 2015, 65, 191-196.	5.4	39
82	Glass Transition Temperature of Cyclic Stars. ACS Macro Letters, 2014, 3, 1254-1257.	4.8	55
83	Nanoparticles of Wellâ€Defined 4â€Arm Stars made using Nanoreactors in Water. Macromolecular Rapid Communications, 2014, 35, 193-197.	3.9	9
84	Multifunctional Nanoworms and Nanorods through a One-Step Aqueous Dispersion Polymerization. Journal of the American Chemical Society, 2014, 136, 5824-5827.	13.7	124
85	Functionalized large pore mesoporous silica nanoparticles for gene delivery featuring controlled release and co-delivery. Journal of Materials Chemistry B, 2014, 2, 718-726.	5.8	97
86	Printable Surface Holograms via Laser Ablation. ACS Photonics, 2014, 1, 489-495.	6.6	59
87	Interaction of Human Arylamine <i>N</i> -Acetyltransferase 1 with Different Nanomaterials. Drug Metabolism and Disposition, 2014, 42, 377-383.	3.3	16
88	Reusable, Robust, and Accurate Laser-Generated Photonic Nanosensor. Nano Letters, 2014, 14, 3587-3593.	9.1	103
89	N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts. Journal of Materials Chemistry A, 2014, 2, 18139-18146.	10.3	179
90	Timed-release polymers as novel transfection reagents. Polymer Chemistry, 2014, 5, 3372-3378.	3.9	6

#	Article	IF	CITATIONS
91	Intracellular Trafficking Pathways for Nuclear Delivery of Plasmid DNA Complexed with Highly Efficient Endosome Escape Polymers. Biomacromolecules, 2014, 15, 3569-3576.	5.4	29
92	Complex Polymer Topologies Built from Tailored Multifunctional Cyclic Polymers. Macromolecules, 2014, 47, 4955-4970.	4.8	71
93	Thermoresponsive Worms for Expansion and Release of Human Embryonic Stem Cells. Biomacromolecules, 2014, 15, 844-855.	5.4	32
94	Polymer–peptide hybrids as a highly immunogenic single-dose nanovaccine. Nanomedicine, 2014, 9, 35-43.	3.3	44
95	Plasma protein binding of positively and negatively charged polymer-coated gold nanoparticles elicits different biological responses. Nanotoxicology, 2013, 7, 314-322.	3.0	122
96	Facile Fabrication of Core–Shellâ€Structured Ag@Carbon and Mesoporous Yolk–Shellâ€Structured Ag@Carbon@Silica by an Extended Stöber Method. Chemistry - A European Journal, 2013, 19, 6942-6945.	3.3	122
97	Self-Adjuvanting Polymer–Peptide Conjugates As Therapeutic Vaccine Candidates against Cervical Cancer. Biomacromolecules, 2013, 14, 2798-2806.	5.4	112
98	Polymer Nanocarrier System for Endosome Escape and Timed Release of siRNA with Complete Gene Silencing and Cell Death in Cancer Cells. Biomacromolecules, 2013, 14, 3386-3389.	5.4	52
99	A comparative study of the SET-LRP of oligo(ethylene oxide) methyl ether acrylate in DMSO and in H2O. Polymer Chemistry, 2013, 4, 144-155.	3.9	119
100	Narrow molecular weight and particle size distributions of polystyrene 4-arm stars synthesized by RAFT-mediated miniemulsions. Polymer Chemistry, 2013, 4, 592-599.	3.9	36
101	Nanofibrillar thermoreversible micellar microgels. Soft Matter, 2013, 9, 2380.	2.7	18
102	Thermoresponsive Polymer-Supported <scp>l</scp> -Proline Micelle Catalysts for the Direct Asymmetric Aldol Reaction in Water. ACS Macro Letters, 2013, 2, 327-331.	4.8	128
103	Living Radical Polymerisation in Emulsion and Miniemulsion. , 2013, , 105-143.		3
104	Timed-Release Polymer Nanoparticles. Biomacromolecules, 2013, 14, 495-502.	5.4	39
105	An influenza virus-inspired polymer system for the timed release of siRNA. Nature Communications, 2013, 4, 1902.	12.8	155
106	Synthesis of alkyne functional cyclic polymers by one-pot thiol–ene cyclization. Polymer Chemistry, 2013, 4, 2080.	3.9	47
107	Fine Tuning the Disassembly Time of Thermoresponsive Polymer Nanoparticles Biomacromolecules, 2013, 14, 3463-3471.	5.4	36
108	Polyacrylamide hydrogel membranes with controlled pore sizes. Journal of Polymer Science Part A, 2013, 51, 129-138.	2.3	16

#	Article	IF	CITATIONS
109	Reversible polymer nanostructures by regulating SDS/PNIPAM binding. Polymer Chemistry, 2013, 4, 233-236.	3.9	30
110	Synthesis of Cyclic Polymers via Ring Closure. Advances in Polymer Science, 2013, , 295-327.	0.8	29
111	Laser Engineered Graphene Paper for Mass Spectrometry Imaging. Scientific Reports, 2013, 3, 1415.	3.3	44
112	Molecular Interaction of Poly(acrylic acid) Gold Nanoparticles with Human Fibrinogen. ACS Nano, 2012, 6, 8962-8969.	14.6	175
113	One-Pot Synthesis of Mikto Three-Arm AB ₂ Stars Constructed from Linear and Macrocyclic Polymer Chains Macromolecules, 2012, 45, 5956-5966.	4.8	37
114	Cyclic polystyrene topologies via RAFT and CuAAC. Polymer Chemistry, 2012, 3, 2986.	3.9	52
115	Construction of a 3-Miktoarm Star from Cyclic Polymers. ACS Macro Letters, 2012, 1, 780-783.	4.8	71
116	Influence of the Zâ€group on the RAFTâ€mediated polymerizations in nanoreactors. Journal of Polymer Science Part A, 2012, 50, 4762-4771.	2.3	6
117	Aqueous reversible additionâ€fragmentation chain transfer dispersion polymerization of thermoresponsive diblock copolymer assemblies: Temperature directed morphology transformations. Journal of Polymer Science Part A, 2012, 50, 4879-4887.	2.3	41
118	Analysis of the Cu(0)-Catalyzed Polymerization of Methyl Acrylate in Disproportionating and Nondisproportionating Solvents. Macromolecules, 2012, 45, 4606-4622.	4.8	138
119	Effect of polymer grafting density on silica nanoparticle toxicity. Bioorganic and Medicinal Chemistry, 2012, 20, 6862-6869.	3.0	17
120	Oligonucleotide and Polymer Functionalized Nanoparticles for Amplification-Free Detection of DNA. Biomacromolecules, 2012, 13, 1981-1989.	5.4	38
121	Heck Reactions in Aqueous Miniemulsions. Australian Journal of Chemistry, 2012, 65, 1090.	0.9	3
122	Enrichment and Detection of Peptides from Biological Systems Using Designed Periodic Mesoporous Organosilica Microspheres. Small, 2012, 8, 231-236.	10.0	36
123	Cyclic polymers: Methods and strategies. Journal of Polymer Science Part A, 2012, 50, 2085-2097.	2.3	250
124	Polymer Nanoparticles via Living Radical Polymerization in Aqueous Dispersions: Design and Applications. Macromolecules, 2012, 45, 4939-4957.	4.8	191
125	Kinetic Simulations of RAFT-Mediated Microemulsion Polymerizations of Styrene. ACS Symposium Series, 2012, , 293-304.	0.5	1
126	Cellular transport pathways of polymer coated gold nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 8-11.	3.3	46

#	Article	IF	CITATIONS
127	Development of encoded particle-polymer arrays for the accelerated screening of antifouling layers. Chemical Communications, 2011, 47, 9687.	4.1	5
128	Directing the pathway of orthogonal †click' reactions by modulating copper-catalytic activity. Chemical Communications, 2011, 47, 4165.	4.1	35
129	A Rapid Electrochemical Method for Determining Rate Coefficients for Copper-Catalyzed Polymerizations. Journal of the American Chemical Society, 2011, 133, 11944-11947.	13.7	70
130	Rapid and Highly Efficient Functionalization of Polymer Bromide End-Groups by SET-NRC. Macromolecules, 2011, 44, 1747-1751.	4.8	49
131	Modulating Two Copper(I)-Catalyzed Orthogonal "Click―Reactions for the One-Pot Synthesis of Highly Branched Polymer Architectures at 25 °C. Macromolecules, 2011, 44, 4814-4827.	4.8	38
132	Self-Catalyzed Degradation of Linear Cationic Poly(2-dimethylaminoethyl acrylate) in Water. Biomacromolecules, 2011, 12, 1876-1882.	5.4	84
133	Self-Catalyzed Degradable Cationic Polymer for Release of DNA. Biomacromolecules, 2011, 12, 3540-3548.	5.4	55
134	Interaction of Densely Polymer-Coated Gold Nanoparticles with Epithelial Caco-2 Monolayers. Biomacromolecules, 2011, 12, 1339-1348.	5.4	56
135	Dendritic and Hyperbranched Polymers from Macromolecular Units: Elegant Approaches to the Synthesis of Functional Polymers. Macromolecules, 2011, 44, 7067-7087.	4.8	174
136	Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nature Nanotechnology, 2011, 6, 39-44.	31.5	781
137	Modulating catalytic activity of polymerâ€based cuAAC "click―reactions. Journal of Polymer Science Part A, 2011, 49, 4539-4548.	2.3	12
138	Synthesis and selfâ€assembly of amphiphilic macrocyclic block copolymer topologies. Journal of Polymer Science Part A, 2011, 49, 4603-4612.	2.3	56
139	Mechanically Driven Reorganization of Thermoresponsive Diblock Copolymer Assemblies in Water. Angewandte Chemie - International Edition, 2011, 50, 8082-8085.	13.8	59
140	Self-adjuvanting polyacrylic nanoparticulate delivery system for group A streptococcus (GAS) vaccine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 168-173.	3.3	73
141	Metal-binding particles alleviate lead and zinc toxicity during seed germination of metallophyte grass Astrebla lappacea. Journal of Hazardous Materials, 2011, 190, 772-779.	12.4	7
142	Functionalization of Polymer Nanoparticles Formed by Microemulsion RAFTâ€Mediated Polymerization. Macromolecular Reaction Engineering, 2010, 4, 257-263.	1.5	11
143	Copper(II) Complexes of a Hexadentate Mixedâ€Đonor N ₃ S ₃ Macrobicyclic Cage: Facile Rearrangements and Interconversions. Chemistry - A European Journal, 2010, 16, 3166-3175.	3.3	28
144	Polyacrylate Dendrimer Nanoparticles: A Selfâ€Adjuvanting Vaccine Delivery System. Angewandte Chemie - International Edition, 2010, 49, 5742-5745.	13.8	149

#	Article	IF	CITATIONS
145	RAFTâ€Mediated Polymerization—A Story of Incompatible Data?. Macromolecular Rapid Communications, 2010, 31, 1846-1862.	3.9	55
146	Kinetic Simulations of Atom Transfer Radical Polymerization (ATRP) in Light of Chain Length Dependent Termination. Macromolecular Theory and Simulations, 2010, 19, 387-393.	1.4	35
147	Kinetic analysis of nitroxide radical coupling reactions mediated by CuBr. Journal of Polymer Science Part A, 2010, 48, 2214-2223.	2.3	35
148	Kinetic simulations for cyclization of α,ωâ€ŧelechelic polymers. Journal of Polymer Science Part A, 2010, 48, 4496-4503.	2.3	32
149	Cellular Uptake of Densely Packed Polymer Coatings on Gold Nanoparticles. ACS Nano, 2010, 4, 403-413.	14.6	171
150	RAFT-Mediated Emulsion Polymerization of Styrene with Low Reactive Xanthate Agents: Microemulsion-like Behavior. Macromolecules, 2010, 43, 7565-7576.	4.8	41
151	Strategy for Rapid and High-Purity Monocyclic Polymers by CuAAC "Click―Reactions. Macromolecules, 2010, 43, 3331-3339.	4.8	148
152	Ultrafast and Reversible Multiblock Formation by the SET-Nitroxide Radical Coupling Reaction. Australian Journal of Chemistry, 2010, 63, 1227.	0.9	35
153	Methyl acrylatepolymerizations in the presence of a copper/N ₃ S ₃ macrobicyclic cage in DMSO at 25 °C. Polymer Chemistry, 2010, 1, 207-212.	3.9	6
154	Nanoreactors to Synthesize Well-defined Polymer Nanoparticles: Decoupling Particle Size from Molecular Weight. Macromolecules, 2010, 43, 9598-9600.	4.8	49
155	Nanoreactors for Polymerizations and Organic Reactions. Macromolecules, 2010, 43, 1159-1168.	4.8	85
156	Various polystyrene topologies built from tailored cyclic polystyrene via CuAAC reactions. Chemical Communications, 2010, 46, 7945.	4.1	101
157	Selfâ€assembly of wellâ€defined amphiphilic polymeric miktoarm stars, dendrons, and dendrimers in water: The effect of architecture. Journal of Polymer Science Part A, 2009, 47, 6292-6303.	2.3	33
158	The disproportionation of Cu(I)X mediated by ligand and solvent into Cu(0) and Cu(II)X ₂ and its implications for SET‣RP. Journal of Polymer Science Part A, 2009, 47, 5606-5628.	2.3	188
159	Shell-crosslinked nanoparticles through self-assembly of thermoresponsive block copolymers by RAFT polymerization. European Polymer Journal, 2009, 45, 2513-2519.	5.4	27
160	Influence of Molecular Weight Distribution (MWD) on <i>k</i> _t and the Onset of the Gel Effect using the RAFT-CLD-T Method. ACS Symposium Series, 2009, , 19-35.	0.5	2
161	Nanoreactors for Aqueous RAFT-Mediated Polymerizations. Macromolecules, 2009, 42, 3884-3886.	4.8	84
162	Rapid, Selective, and Reversible Nitroxide Radical Coupling (NRC) Reactions at Ambient Temperature. Macromolecules, 2009, 42, 8218-8227.	4.8	123

#	Article	IF	CITATIONS
163	Time-of-Flight Secondary Ion Mass Spectrometry Study of the Orientation of a Bifunctional Diblock Copolymer Attached to a Solid Substrate. Langmuir, 2009, 25, 1011-1019.	3.5	10
164	RAFT-Mediated Polymerization of Styrene in Readily Biodegradable Ionic Liquids. Macromolecules, 2009, 42, 1604-1609.	4.8	28
165	Termination in Semi-Dilute and Concentrated Polymer Solutions. Australian Journal of Chemistry, 2009, 62, 857.	0.9	3
166	RAFT-Mediated Emulsion Polymerization of Styrene in Water using a Reactive Polymer Nanoreactor. Australian Journal of Chemistry, 2009, 62, 1528.	0.9	24
167	Advise use of rear facing child car seats for children under 4 years old. BMJ: British Medical Journal, 2009, 338, b1994-b1994.	2.3	6
168	Outerâ€sphere electron transfer metalâ€catalyzed polymerization of styrene using a macrobicyclic ligand. Journal of Polymer Science Part A, 2008, 46, 146-154.	2.3	29
169	Divergent synthesis and selfâ€assembly of amphiphilic polymeric dendrons with selective degradable linkages. Journal of Polymer Science Part A, 2008, 46, 1533-1547.	2.3	51
170	Bimolecular radical termination: New perspectives and insights. Journal of Polymer Science Part A, 2008, 46, 3155-3173.	2.3	124
171	Synthesis of linear and 4â€arm star block copolymers of poly(methyl acrylateâ€ <i>b</i> â€solketal acrylate) by SETâ€LRP at 25 °C. Journal of Polymer Science Part A, 2008, 46, 6346-6357.	2.3	71
172	Design Criteria for Accurate Measurement of Bimolecular Radical Termination Rate Coefficients via the RAFTâ€CLDâ€T Method. Macromolecular Theory and Simulations, 2008, 17, 460-469.	1.4	14
173	Self-Assembly of Amphiphilic Polymeric Dendrimers Synthesized with Selective Degradable Linkages. Macromolecules, 2008, 41, 76-86.	4.8	93
174	Effect of Cu(0) Particle Size on the Kinetics of SET-LRP in DMSO and Cu-Mediated Radical Polymerization in MeCN at 25 °C. Macromolecules, 2008, 41, 8365-8371.	4.8	187
175	Solvent Choice Differentiates SET-LRP and Cu-Mediated Radical Polymerization with Non-First-Order Kinetics. Macromolecules, 2008, 41, 8360-8364.	4.8	237
176	Simple technique to prevent twisting of the perforating vessels in an anterolateral thigh flap. British Journal of Oral and Maxillofacial Surgery, 2008, 46, 694-695.	0.8	8
177	Diffusion Controlled Termination of Linear Polystyrene Radicals in Linear, 4-Arm, and 6-Arm Star Polymer Matrices in Dilute, Semidilute, and Concentrated Solution Conditions. Macromolecules, 2008, 41, 727-736.	4.8	45
178	Convergent Synthesis of Second Generation AB-Type Miktoarm Dendrimers Using "Click―Chemistry Catalyzed by Copper Wire. Macromolecules, 2008, 41, 1057-1060.	4.8	131
179	Adsorption of Well-Defined Fluorine-Containing Polymers onto Poly(tetrafluoroethylene). Langmuir, 2008, 24, 13075-13083.	3.5	24
180	Chain Length Dependent Termination Rate Coefficients of Methyl Methacrylate (MMA) in the Gel Regime:Â Accessingkti,iUsing Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. Macromolecules, 2007, 40, 2730-2736.	4.8	56

#	Article	IF	CITATIONS
181	Reactive Alkyne and Azide Solid Supports To Increase Purity of Novel Polymeric Stars and Dendrimers via the "Click―Reaction. Macromolecules, 2007, 40, 7056-7059.	4.8	69
182	Kinetic Modeling of "Living―and Conventional Free Radical Polymerizations of Methyl Methacrylate in Dilute and Gel Regimes. Macromolecules, 2007, 40, 7171-7179.	4.8	48
183	Formation of Tethered Polyacrylic Acid Loops in Coreâ^'Shell Micelles. Langmuir, 2007, 23, 7887-7890.	3.5	11
184	Kinetic simulation of single electron transfer–living radical polymerization of methyl acrylate at 25 °C. Journal of Polymer Science Part A, 2007, 45, 1835-1847.	2.3	123
185	Original approach to multiblock copolymers via reversible addition–fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2007, 45, 2334-2340.	2.3	79
186	Degradative chain transfer in vinyl acetate polymerizations using toluene as solvent. Journal of Polymer Science Part A, 2007, 45, 3620-3625.	2.3	12
187	Versatile synthetic approach to reversible crosslinked polystyrene networks via RAFT polymerization. Journal of Polymer Science Part A, 2007, 45, 4150-4153.	2.3	22
188	Effect of Degassing on Surfactant-Free Emulsion Polymerizations of Styrene Mediated with RAFT. Macromolecules, 2006, 39, 904-907.	4.8	31
189	Synthesis of 3-Miktoarm Stars and 1st Generation Mikto Dendritic Copolymers by "Living―Radical Polymerization and "Click―Chemistry. Journal of the American Chemical Society, 2006, 128, 11360-11361.	13.7	257
190	Synthesis of Monocyclic and Linear Polystyrene Using the Reversible Coupling/Cleavage of Thiol/Disulfide Groups. Macromolecules, 2006, 39, 9028-9034.	4.8	152
191	RAFT-Mediated Emulsion Polymerization of Styrene using a Non-Ionic Surfactant. Australian Journal of Chemistry, 2006, 59, 728.	0.9	23
192	Novel Approach to Tailoring Molecular Weight Distribution and Structure with a Difunctional RAFT Agent. Macromolecules, 2006, 39, 4966-4974.	4.8	27
193	Synthesis of Soluble Phosphate Polymers by RAFT and Their in Vitro Mineralization Biomacromolecules, 2006, 7, 3178-3187.	5.4	71
194	Synthesis and Aggregation Behavior of Four-Arm Star Amphiphilic Block Copolymers in Water. Langmuir, 2006, 22, 9746-9752.	3.5	66
195	Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization. I. The current situation. Journal of Polymer Science Part A, 2006, 44, 5809-5831.	2.3	429
196	Ultrafast Synthesis of Ultrahigh Molar Mass Polymers by Metal-Catalyzed Living Radical Polymerization of Acrylates, Methacrylates, and Vinyl Chloride Mediated by SET at 25 °C. Journal of the American Chemical Society, 2006, 128, 14156-14165.	13.7	1,088
197	Tailoring Molecular Weight Distribution and Structure with Difunctional Reversible Addition Fragmentation Chain Transfer Agent. A Model Study. ACS Symposium Series, 2006, , 421-437.	0.5	1
198	Surface-Functionalized Polymer Nanoparticles for Selective Sequestering of Heavy Metals. Advanced Materials, 2006, 18, 582-586.	21.0	51

#	Article	IF	CITATIONS
199	Accessing Chain Length Dependent Termination Rate Coefficients of Methyl Methacrylate (MMA) via the Reversible Addition Fragmentation Chain Transfer (RAFT) Process. Macromolecular Chemistry and Physics, 2005, 206, 2047-2053.	2.2	82
200	Design strategies for controlling the molecular weight and rate using reversible addition-fragmentation chain transfer mediated living radical polymerization. Journal of Polymer Science Part A, 2005, 43, 3189-3204.	2.3	134
201	Controlled radical polymerization of styrene and methyl acrylate in the presence of reversible addition-fragmentation chain transfer agents, phenylethyl phenyl dithioacetate and phenyldithioacetic acid. Journal of Polymer Science Part A, 2005, 43, 5232-5245.	2.3	23
202	Modeling the molecular weight distribution of block copolymer formation in a reversible addition-fragmentation chain transfer mediated living radical polymerization. Journal of Polymer Science Part A, 2005, 43, 5643-5651.	2.3	69
203	A "Living―Radical ab Initio Emulsion Polymerization of Styrene Using a Fluorinated Xanthate Agent. Macromolecules, 2005, 38, 1538-1541.	4.8	88
204	Effect of Impurities in Cumyl Dithiobenzoate on RAFT-Mediated Polymerizations. Macromolecules, 2005, 38, 5352-5355.	4.8	69
205	Cryo-sectioning and chemical-fixing ultramicrotomy techniques for imaging rubber latex particle morphology. Microscopy Research and Technique, 2004, 63, 111-114.	2.2	12
206	Seeded Emulsion Polymerization of Block Copolymer Coreâ^'Shell Nanoparticles with Controlled Particle Size and Molecular Weight Distribution Using Xanthate-Based RAFT Polymerization. Macromolecules, 2004, 37, 4474-4483.	4.8	89
207	Protein Transfer through Polyacrylamide Hydrogel Membranes Polymerized in Lyotropic Phases. Biomacromolecules, 2004, 5, 1637-1641.	5.4	14
208	Characterization of 3- and 4-Arm Stars from Reactions of Poly(butyl acrylate) RAFT and ATRP Precursors. Macromolecules, 2004, 37, 7906-7917.	4.8	68
209	A difference of six orders of magnitude: A reply to ?the magnitude of the fragmentation rate coefficient?. Journal of Polymer Science Part A, 2003, 41, 2833-2839.	2.3	131
210	A Kinetic Investigation of Seeded Emulsion Polymerization of Styrene Using Reversible Additionâ^'Fragmentation Chain Transfer (RAFT) Agents with a Low Transfer Constant. Macromolecules, 2003, 36, 4309-4318.	4.8	82
211	Influence of the Chemical Structure of MADIX Agents on the RAFT Polymerization of Styrene. Macromolecules, 2003, 36, 2293-2301.	4.8	86
212	The iniferter technique in radical polymerization under UV and thermal conditions: a comparative study. E-Polymers, 2002, 2, .	3.0	0
213	Flexibilized Styrene-N-Substituted Maleimide Copolymers with Enhanced Entanglement Density. Macromolecules, 2002, 35, 6210-6216.	4.8	15
214	Aqueous Room Temperature Metal-Catalyzed Living Radical Polymerization of Vinyl Chloride. Journal of the American Chemical Society, 2002, 124, 4940-4941.	13.7	412
215	High Pressure 'Living' Free-Radical Polymerization of Styrene in the Presence of RAFT. Australian Journal of Chemistry, 2002, 55, 433.	0.9	54
216	Preparation of Reactive Composite Latexes by â€~Living' Radical Polymerization Using the RAFT Process. A New Class of Polymer Materials. Macromolecular Rapid Communications, 2002, 23, 370-374.	3.9	35

#	Article	IF	CITATIONS
217	Rational design of polymer colloids. Macromolecular Symposia, 2001, 174, 13-28.	0.7	10
218	Intermediate Radical Termination as the Mechanism for Retardation in Reversible Additionâ^'Fragmentation Chain Transfer Polymerization. Macromolecules, 2001, 34, 349-352.	4.8	331
219	Free-Radical Polymerization of Styrene in Emulsion Using a Reversible Additionâ^'Fragmentation Chain Transfer Agent with a Low Transfer Constant:Â Effect on Rate, Particle Size, and Molecular Weight. Macromolecules, 2001, 34, 4416-4423.	4.8	177
220	Living Radical Polymerization by Reversible Additionâ^'Fragmentation Chain Transfer in Ionically Stabilized Miniemulsions. Macromolecules, 2001, 34, 3938-3946.	4.8	137
221	Modification of Natural and Artificial Polymer Colloids by "Topology-Controlled―Emulsion Polymerization. Biomacromolecules, 2001, 2, 518-525.	5.4	54
222	Emulsion polymerization of methyl methacrylate in the presence of novel addition-fragmentation chain-transfer reactive surfactant (transurf). Journal of Polymer Science Part A, 2001, 39, 2813-2820.	2.3	15
223	Synthesis and Characterization of a Novel Addition–Fragmentation Reactive Surfactant (TRANSURF) for Use in Free-Radical Emulsion Polymerizations. Journal of Colloid and Interface Science, 2001, 237, 21-27.	9.4	13
224	Effect of ambient crosslinking on the mechanical properties and film morphology of PSTY-P(BA-co-AAEMA) reactive composite latexes. European Polymer Journal, 2001, 37, 965-973.	5.4	29
225	Retardative chain transfer in free radical free-radical polymerisations of vinyl neo -decanoate in low molecular weight polyisoprene and toluene. Polymer, 2001, 42, 2403-2411.	3.8	20
226	Novel graft copolymers from mechanistically-designed seeded emulsion polymerization. Macromolecular Symposia, 2000, 152, 43-53.	0.7	10
227	Pulsed-laser polymerization (PLP) of N-isopropyl acrylamide (NIPAM) in water: a qualitative study. Macromolecular Symposia, 2000, 150, 275-281.	0.7	15
228	Controlled radical copolymerization of styrene and maleic anhydride and the synthesis of novel polyolefin-based block copolymers by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Journal of Polymer Science Part A, 2000, 38, 3596-3603.	2.3	240
229	The influence of RAFT on the rates and molecular weight distributions of styrene in seeded emulsion polymerizations. Journal of Polymer Science Part A, 2000, 38, 3864-3874.	2.3	170
230	Synthesis of butyl acrylate-styrene block copolymers in emulsion by reversible addition-fragmentation chain transfer: Effect of surfactant migration upon film formation. Journal of Polymer Science Part A, 2000, 38, 4206-4217.	2.3	97
231	Free-radical kinetics of grafting reactions for creating novel graft copolymers in emulsion polymerization. Macromolecular Symposia, 2000, 150, 155-160.	0.7	3
232	Living Radical Polymerization in Miniemulsion Using Reversible Additionâ^'Fragmentation Chain Transfer. Macromolecules, 2000, 33, 9239-9246.	4.8	211
233	Propagation Rate Coefficient of Poly(N-isopropylacrylamide) in Water below Its Lower Critical Solution Temperature. Macromolecules, 2000, 33, 8589-8596.	4.8	75
234	Grafting Kinetics of Vinyl Neodecanoate onto Polybutadiene. Macromolecules, 2000, 33, 2383-2390.	4.8	14

#	Article	IF	CITATIONS
235	Pulsed-Laser Polymerization in Compartmentalized Liquids. 1. Polymerization in Vesicles. Macromolecules, 2000, 33, 3620-3629.	4.8	15
236	Molecular Weight Characterization of Poly(N-isopropylacrylamide) Prepared by Living Free-Radical Polymerization. Macromolecules, 2000, 33, 6738-6745.	4.8	331
237	Using mechanisms to make seemingly impossible latexes and polymers. Macromolecular Symposia, 2000, 150, 73-84.	0.7	15
238	Improving the knowledge and design of end groups in polymers produced by free radical polymerization. Polymers for Advanced Technologies, 1998, 9, 94-100.	3.2	11
239	A Theoretical Study of Propagation Rate Coefficients for Methacrylonitrile and Acrylonitrile. Macromolecules, 1998, 31, 5175-5187.	4.8	52
240	Measurement of Diffusion Coefficients of Oligomeric Penetrants in Rubbery Polymer Matrixes. Macromolecules, 1998, 31, 7835-7844.	4.8	110
241	A Mechanistic Perspective on Solvent Effects in Free-Radical Copolymerization. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 1998, 38, 567-593.	2.2	96
242	Initiation in free radical copolymerization studied by the nitroxide trapping method: styrene and acrylonitrile. Polymer, 1997, 38, 165-171.	3.8	21
243	Initiation mechanisms in copolymerization: Reaction oft-butoxyl radicals with co-monomers ethyl vinyl ether and methyl methacrylate. Journal of Polymer Science Part A, 1997, 35, 263-270.	2.3	15
244	The effect of benzyl alcohol on pulsed laser polymerization of styrene and methylmethacrylate. Journal of Polymer Science Part A, 1997, 35, 515-520.	2.3	52
245	Initiation Processes in Copolymerization Studied by the Nitroxide Radical-Trapping Technique: Ethyl Vinyl Ether and Acrylonitrile. Australian Journal of Chemistry, 1997, 50, 1.	0.9	15
246	Reactions of tert-butoxyl radicals with acyclic ethers studied by the radical trapping technique. Journal of the Chemical Society Perkin Transactions II, 1994, , 1071.	0.9	21
247	Heterogeneous Systems. , 0, , 301-331.		5
248	Temperatureâ€Directed Formation of Anisotropic Kettlebell and Tadpole Nanostructures in the Absence of a Swellingâ€Induced Solvent. Angewandte Chemie, 0, , .	2.0	0