
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2987968/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	What happens to terrestrial organic matter in the ocean?. Organic Geochemistry, 1997, 27, 195-212.	1.8	1,294
2	Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nature Reviews Microbiology, 2010, 8, 593-599.	28.6	1,278
3	Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature, 1987, 329, 708-710.	27.8	936
4	Bacterial utilization of different size classes of dissolved organic matter. Limnology and Oceanography, 1996, 41, 41-51.	3.1	860
5	Bulk Chemical Characteristics of Dissolved Organic Matter in the Ocean. Science, 1992, 255, 1561-1564.	12.6	820
6	Characterization of a major refractory component of marine dissolved organic matter. Geochimica Et Cosmochimica Acta, 2006, 70, 2990-3010.	3.9	731
7	Production of Refractory Dissolved Organic Matter by Bacteria. Science, 2001, 292, 917-920.	12.6	599
8	Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature, 1997, 386, 480-482.	27.8	468
9	Rapid cycling of high-molecular-weight dissolved organic matter in the ocean. Nature, 1994, 369, 549-552.	27.8	450
10	Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: plume processes. Continental Shelf Research, 2004, 24, 833-858.	1.8	435
11	Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnology and Oceanography, 1997, 42, 506-518.	3.1	421
12	Origins and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids. Limnology and Oceanography, 1994, 39, 743-761.	3.1	386
13	A critical evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation. Marine Chemistry, 1993, 41, 153-160.	2.3	375
14	Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnology and Oceanography, 2001, 46, 287-297.	3.1	355
15	Early diagenesis of vascular plant tissues: Lignin and cutin decomposition and biogeochemical implications. Geochimica Et Cosmochimica Acta, 1995, 59, 4889-4904.	3.9	354
16	The spectral slope coefficient of chromophoric dissolved organic matter (<i>S</i> _{275–295}) as a tracer of terrigenous dissolved organic carbon in riverâ€influenced ocean margins. Limnology and Oceanography, 2012, 57, 1453-1466.	3.1	352
17	Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochimica Et Cosmochimica Acta, 1996, 60, 1783-1792.	3.9	332

18 Major Bacterial Contribution to Marine Dissolved Organic Nitrogen. , 1998, 281, 231-234.

325

#	Article	IF	CITATIONS
19	Chemical Composition and Reactivity. , 2002, , 59-90.		320
20	Anaerobic Biodegradation of the Lignin and Polysaccharide Components of Lignocellulose and Synthetic Lignin by Sediment Microflora. Applied and Environmental Microbiology, 1984, 47, 998-1004.	3.1	317
21	Marine phosphorus is selectively remineralized. Nature, 1998, 393, 426-426.	27.8	306
22	Abundance, size distribution, and stable carbon and nitrogen isotopic compositions of marine organic matter isolated by tangential-flow ultrafiltration. Marine Chemistry, 1997, 57, 243-263.	2.3	304
23	Composition and cycling of marine organic phosphorus. Limnology and Oceanography, 2001, 46, 309-320.	3.1	298
24	Photochemical and microbial degradation of dissolved lignin phenols: Implications for the fate of terrigenous dissolved organic matter in marine environments. Journal of Geophysical Research, 2003, 108, .	3.3	289
25	Photochemical reactivity of dissolved lignin in river and ocean waters. Limnology and Oceanography, 1998, 43, 1297-1304.	3.1	288
26	The Size-Reactivity Continuum of Major Bioelements in the Ocean. Annual Review of Marine Science, 2015, 7, 185-205.	11.6	284
27	Major flux of terrigenous dissolved organic matter through the Arctic Ocean. Limnology and Oceanography, 1999, 44, 2017-2023.	3.1	282
28	Carbohydrates in phytoplankton and freshly produced dissolved organic matter. Marine Chemistry, 1998, 63, 131-144.	2.3	280
29	Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnology and Oceanography, 1997, 42, 1364-1374.	3.1	274
30	Molecular indicators of the sources and transformations of dissolved organic matter in the Mississippi river plume. Organic Geochemistry, 2001, 32, 597-611.	1.8	272
31	Chemical composition of dissolved organic nitrogen in the ocean. Nature, 1997, 390, 150-154.	27.8	271
32	Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnology and Oceanography, 2004, 49, 117-124.	3.1	269
33	Abundance and distribution of carbohydrates in the ocean. Limnology and Oceanography, 1994, 39, 930-940.	3.1	247
34	Biochemical composition and size distribution of organic matter at the Pacific and Atlantic time-series stations. Marine Chemistry, 2009, 113, 63-77.	2.3	239
35	Aldoses in various size fractions of marine organic matter: Implications for carbon cycling. Limnology and Oceanography, 1997, 42, 1803-1813.	3.1	238
36	Active cycling of organic carbon in the central Arctic Ocean. Nature, 1996, 380, 697-699.	27.8	232

#	Article	IF	CITATIONS
37	Photochemical transformations of surface and deep marine dissolved organic matter: Effects on bacterial growth. Limnology and Oceanography, 1998, 43, 1373-1378.	3.1	232
38	Subcellular localization of marine bacterial alkaline phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21219-21223.	7.1	229
39	Major biochemical composition of dissolved high molecular weight organic matter in seawater. Marine Chemistry, 1996, 55, 281-297.	2.3	225
40	Marine sequestration of carbon in bacterial metabolites. Nature Communications, 2015, 6, 6711.	12.8	223
41	A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	210
42	Diagenesis of belowground biomass of Spartina alterniflora in saltâ€narsh sediments. Limnology and Oceanography, 1991, 36, 1358-1374.	3.1	206
43	Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochimica Et Cosmochimica Acta, 2007, 71, 4727-4744.	3.9	202
44	A molecular perspective on the ageing of marine dissolved organic matter. Biogeosciences, 2012, 9, 1935-1955.	3.3	200
45	Bacterial release of dissolved organic matter during cell growth and decline: Molecular origin and composition. Limnology and Oceanography, 2006, 51, 2170-2180.	3.1	198
46	Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnology and Oceanography, 2008, 53, 99-112.	3.1	198
47	Pan-Arctic distributions of continental runoff in the Arctic Ocean. Scientific Reports, 2013, 3, 1053.	3.3	195
48	Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnology and Oceanography, 2003, 48, 118-128.	3.1	190
49	Biological and photochemical transformations of amino acids and lignin phenols in riverine dissolved organic matter. Biogeochemistry, 2011, 102, 209-222.	3.5	179
50	Tannin diagenesis in mangrove leaves from a tropical estuary: a novel molecular approach. Geochimica Et Cosmochimica Acta, 2001, 65, 3109-3122.	3.9	177
51	Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	177
52	Origins and bioavailability of dissolved organic matter in groundwater. Biogeochemistry, 2015, 122, 61-78.	3.5	176
53	Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: Relative contributions of procaryotes and eucaryotes1. Limnology and Oceanography, 1986, 31, 89-100.	3.1	173
54	Amino acid and amino sugar yields and compositions as indicators of dissolved organic matter diagenesis. Organic Geochemistry, 2009, 40, 343-352.	1.8	171

#	Article	IF	CITATIONS
55	Terrigenous dissolved organic matter in the Arctic Ocean and its transport to surface and deep waters of the North Atlantic. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	169
56	Hydrogen-deficient molecules in natural riverine water samples—evidence for the existence of black carbon in DOM. Marine Chemistry, 2004, 92, 225-234.	2.3	163
57	Hydrolysisâ€induced racemization of amino acids. Limnology and Oceanography: Methods, 2005, 3, 318-325.	2.0	160
58	Analyses of dissolved organic carbon in seawater: the JGOFS EqPac methods comparison. Marine Chemistry, 1995, 48, 91-108.	2.3	157
59	Plankton respiration and carbon flux through bacterioplankton on the Louisiana shelf. Limnology and Oceanography, 1994, 39, 1259-1275.	3.1	152
60	An improved method for the hydrolysis and MBTH analysis of dissolved and particulate carbohydrates in seawater. Marine Chemistry, 1992, 40, 143-160.	2.3	150
61	Relative Contributions of Bacteria and Fungi to Rates of Degradation of Lignocellulosic Detritus in Salt-Marsh Sediments. Applied and Environmental Microbiology, 1984, 48, 36-40.	3.1	149
62	The fate of terrigenous dissolved organic carbon in a riverâ€influenced ocean margin. Global Biogeochemical Cycles, 2014, 28, 300-318.	4.9	147
63	Isolation and Quantification of Dissolved Lignin from Natural Waters Using Solid-Phase Extraction and GC/MS. Analytical Chemistry, 2000, 72, 2780-2787.	6.5	145
64	Early diagenesis of mangrove leaves in a tropical estuary: Molecular-level analyses of neutral sugars and lignin-derived phenols. Geochimica Et Cosmochimica Acta, 1990, 54, 1991-2001.	3.9	142
65	Reâ€evaluation of high temperature combustion and chemical oxidation measurements of dissolved organic carbon in seawater. Limnology and Oceanography, 1993, 38, 1774-1782.	3.1	137
66	Bacterial carbon metabolism in the Amazon River system. Limnology and Oceanography, 1995, 40, 1262-1270.	3.1	135
67	Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics. Biogeosciences, 2012, 9, 925-940.	3.3	132
68	Enhanced bacterioplankton production and respiration at intermediate salinities in the Mississippi River plume. Marine Ecology - Progress Series, 1992, 87, 87-103.	1.9	131
69	Early diagenesis of mangrove leaves in a tropical estuary: Bulk chemical characterization using solid-state 13C NMR and elemental analyses. Geochimica Et Cosmochimica Acta, 1990, 54, 2003-2013.	3.9	128
70	Microbial contributions to N-immobilization and organic matter preservation in decaying plant detritus. Geochimica Et Cosmochimica Acta, 2006, 70, 133-146.	3.9	126
71	Transport and diagenesis of dissolved and particulate terrigenous organic matter in the North Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49, 2119-2132.	1.4	125
72	Arctic system on trajectory to new, seasonally ice-free state. Eos, 2005, 86, 309.	0.1	124

#	Article	IF	CITATIONS
73	Linkages among runoff, dissolved organic carbon, and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	122
74	Microbial degradation of the leachable and lignocellulosic components of leaves and wood from Rhizophora mangle in a tropical mangrove swamp. Marine Ecology - Progress Series, 1985, 23, 221-230.	1.9	121
75	Degradation of polysaccharides and lignin by ruminal bacteria and fungi. Applied and Environmental Microbiology, 1988, 54, 1117-1125.	3.1	120
76	Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon. Marine Ecology - Progress Series, 1999, 180, 149-160.	1.9	120
77	Marine organic phosphorus cycling; novel insights from nuclear magnetic resonance. Numerische Mathematik, 1999, 299, 724-737.	1.4	118
78	Combined neutral sugars as indicators of the diagenetic state of dissolved organic matter in the Arctic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2003, 50, 151-169.	1.4	116
79	The 180:160 of dissolved oxygen in rivers and lakes in the Amazon Basin: Determining the ratio of respiration to photosynthesis rates in freshwaters. Limnology and Oceanography, 1995, 40, 718-729.	3.1	111
80	Terrigenous organic matter sources and reactivity in the North Atlantic Ocean and a comparison to the Arctic and Pacific oceans. Marine Chemistry, 2006, 100, 66-79.	2.3	109
81	Quantitative estimates of labile and semiâ€labile dissolved organic carbon in the western Arctic Ocean: A molecular approach. Limnology and Oceanography, 2007, 52, 2434-2444.	3.1	107
82	Seasonal trends in the abundance, composition and bioavailability of particulate and dissolved organic matter in the Chukchi/Beaufort Seas and western Canada Basin. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52, 3396-3410.	1.4	102
83	Evolving paradigms in biological carbon cycling in the ocean. National Science Review, 2018, 5, 481-499.	9.5	100
84	A test of the accuracy of freshwater DOC measurements by high-temperature catalytic oxidation and UV-promoted persulfate oxidation. Marine Chemistry, 1993, 41, 161-165.	2.3	99
85	Hydroxy fatty acids in marine dissolved organic matter as indicators of bacterial membrane material. Organic Geochemistry, 2003, 34, 857-868.	1.8	99
86	Chemical characteristics of dissolved organic nitrogen in an oligotrophic subtropical coastal ecosystem. Geochimica Et Cosmochimica Acta, 2006, 70, 4491-4506.	3.9	99
87	Molecular Indicators of the Bioavailability of Dissolved Organic Matter. , 2003, , 121-137.		96
88	Microbial utilization of dissolved organic matter from leaves of the red mangrove, Rhizophora mangle, in the Fresh Creek estuary, Bahamas. Estuarine, Coastal and Shelf Science, 1986, 23, 607-619.	2.1	95
89	Effects of pH and plant source on lignocellulose biodegradation rates in two wetland ecosystems, the Okefenokee Swamp and a Georgia salt marsh1,2,3. Limnology and Oceanography, 1985, 30, 489-499.	3.1	94
90	Determination of Amino Sugars in Environmental Samples with High Salt Content by High-Performance Anion-Exchange Chromatography and Pulsed Amperometric Detection. Analytical Chemistry, 2000, 72, 2566-2572.	6.5	93

#	Article	IF	CITATIONS
91	Characterization of carbohydrates during early diagenesis of five vascular plant tissues. Organic Geochemistry, 1999, 30, 83-94.	1.8	92
92	Microbial Metabolism and Nutrient Cycling in the Mississippi and Atchafalaya River Plumes. Estuarine, Coastal and Shelf Science, 2000, 50, 173-184.	2.1	92
93	Comparative analyses of DOC and DON in natural waters. Marine Chemistry, 1993, 41, 121-134.	2.3	86
94	Bacterial utilization of dissolved glucose in the upper water column of the Gulf of Mexico. Limnology and Oceanography, 1999, 44, 1625-1633.	3.1	84
95	Amino acid carbon isotopic fractionation patterns in oceanic dissolved organic matter: an unaltered photoautotrophic source for dissolved organic nitrogen in the ocean?. Marine Chemistry, 2004, 92, 123-134.	2.3	81
96	Mixing it up in the ocean carbon cycle and the removal of refractory dissolved organic carbon. Scientific Reports, 2018, 8, 2542.	3.3	81
97	Preparation, Characterization, and Microbial Degradation of Specifically Radiolabeled [¹⁴ C]Lignocelluloses from Marine and Freshwater Macrophytes. Applied and Environmental Microbiology, 1984, 47, 381-389.	3.1	81
98	Unveiling the enigma of refractory carbon in the ocean. National Science Review, 2018, 5, 459-463.	9.5	80
99	The Transpolar Drift as a Source of Riverine and Shelfâ€Derived Trace Elements to the Central Arctic Ocean. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015920.	2.6	80
100	Decomposition of senescent blades of the seagrass Halodule wrightii in a subtropical lagoon. Marine Ecology - Progress Series, 1993, 94, 191-205.	1.9	77
101	Floodplain influence on dissolved organic matter composition and export from the Mississippi—Atchafalaya River system to the Gulf of Mexico. Limnology and Oceanography, 2012, 57, 1149-1160.	3.1	76
102	The microbial carbon pump and the oceanic recalcitrant dissolved organic matter pool. Nature Reviews Microbiology, 2011, 9, 555-555.	28.6	73
103	Characterization of Lignin by Gas Chromatography and Mass Spectrometry Using a Simplified CuO Oxidation Method. Analytical Chemistry, 2012, 84, 459-464.	6.5	72
104	The roles of microorganisms in litter decomposition and soil formation. Biogeochemistry, 2014, 118, 471-486.	3.5	72
105	P limitation of respiration in the Sargasso Sea and uncoupling of bacteria from P regeneration in size-fractionation experiments. Aquatic Microbial Ecology, 2003, 32, 229-237.	1.8	70
106	Organic matter transformations in the upper mesopelagic zone of the North Pacific: Chemical composition and linkages to microbial community structure. Journal of Geophysical Research, 2012, 117, .	3.3	69
107	Sources, distributions, and early diagenesis of sedimentary organic matter in the Pearl River region of the South China Sea. Marine Chemistry, 2014, 158, 39-48.	2.3	69
108	The chemical composition of dissolved organic matter in seawater. Chemical Geology, 1993, 107, 503-507.	3.3	68

#	Article	IF	CITATIONS
109	Molecular properties are a primary control on the microbial utilization of dissolved organic matter in the ocean. Limnology and Oceanography, 2020, 65, 1061-1071.	3.1	67
110	Nature and dynamics of phosphorus-containing components of marine dissolved and particulate organic matter. Geochimica Et Cosmochimica Acta, 2006, 70, 5868-5882.	3.9	66
111	Ecosystem metabolism in a subtropical, seagrass-dominated lagoon. Marine Ecology - Progress Series, 1998, 173, 1-12.	1.9	66
112	What happens to terrestrial organic matter in the ocean?. Marine Chemistry, 2004, 92, 307-310.	2.3	65
113	Denitrification, nutrient regeneration and carbon mineralization in sediments of Galveston Bay, Texas, USA. Marine Ecology - Progress Series, 1994, 114, 275-288.	1.9	65
114	High-resolution measurements of dissolved organic carbon in the Arctic Ocean byin situfiber-optic spectrometry. Geophysical Research Letters, 1999, 26, 1007-1010.	4.0	63
115	Linkages among fluorescent dissolved organic matter, dissolved amino acids and lignin-derived phenols in a river-influenced ocean margin. Frontiers in Marine Science, 2015, 2, .	2.5	63
116	The fate of terrigenous dissolved organic carbon on the <scp>E</scp> urasian shelves and export to the <scp>N</scp> orth <scp>A</scp> tlantic. Journal of Geophysical Research: Oceans, 2017, 122, 4-22.	2.6	62
117	Depth distributions of alkaline phosphatase and phosphonate utilization genes in the North Pacific Subtropical Gyre. Aquatic Microbial Ecology, 2011, 62, 61-69.	1.8	61
118	Loose ligands and available iron in the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 893-894.	7.1	61
119	Dissolved organic matter composition and bioavailability reflect ecosystem productivity in the Western Arctic Ocean. Biogeosciences, 2012, 9, 4993-5005.	3.3	60
120	Pulsed, crossâ€shelf export of terrigenous dissolved organic carbon to the Gulf of Mexico. Journal of Geophysical Research: Oceans, 2014, 119, 1176-1194.	2.6	59
121	Measurement of dissolved organic carbon and nitrogen in natural waters: Workshop report. Marine Chemistry, 1993, 41, 5-10.	2.3	57
122	Seasonal Patterns of Bacterial Abundance and Production in the Mississippi River Plume and Their Importance for the Fate of Enhanced Primary Production. Microbial Ecology, 1998, 35, 289-300.	2.8	57
123	Denitrification and oxygen consumption in sediments of two south Texas estuaries. Marine Ecology - Progress Series, 1992, 90, 157-167.	1.9	56
124	Carbon fluxes in the Canadian Arctic: patterns and drivers of bacterial abundance, production and respiration on the Beaufort Sea margin. Biogeosciences, 2012, 9, 3679-3692.	3.3	55
125	Photoproduction of ammonium in the southeastern Beaufort Sea and its biogeochemical implications. Biogeosciences, 2012, 9, 3047-3061.	3.3	55
126	Nutrient cycling in the water column of a subtropical seagrass meadow. Marine Ecology - Progress Series, 1999, 188, 51-62.	1.9	53

#	Article	IF	CITATIONS
127	Organic matter diagenesis and bacterial contributions to detrital carbon and nitrogen in the Amazon River system. Limnology and Oceanography, 2009, 54, 681-691.	3.1	52
128	Cycling of dissolved and particulate organic matter at station Aloha: Insights from 13C NMR spectroscopy coupled with elemental, isotopic and molecular analyses. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52, 1429-1444.	1.4	51
129	Photochemical transformations of riverine dissolved organic matter: effects on estuarine bacterial metabolism and nutrient demand. Aquatic Microbial Ecology, 2005, 40, 37-50.	1.8	51
130	Carbon conversion efficiency for bacterial growth on lignocellulose: Implications for detritus-based food webs. Limnology and Oceanography, 1988, 33, 1514-1526.	3.1	51
131	Predicting Dissolved Lignin Phenol Concentrations in the Coastal Ocean from Chromophoric Dissolved Organic Matter (CDOM) Absorption Coefficients. Frontiers in Marine Science, 2016, 3, .	2.5	50
132	Marine biopolymer self-assembly: implications for carbon cycling in the ocean. Faraday Discussions, 2008, 139, 393.	3.2	47
133	Effects of solar radiation on dissolved organic matter cycling in a subtropical seagrass meadow. Limnology and Oceanography, 2000, 45, 257-266.	3.1	46
134	Biosequestration of carbon by heterotrophic microorganisms. Nature Reviews Microbiology, 2011, 9, 75-75.	28.6	44
135	Bacterial carbon content and the living and detrital bacterial contributions to suspended particulate organic carbon in the North Pacific Ocean. Aquatic Microbial Ecology, 2011, 62, 165-176.	1.8	44
136	Effects of high-molecular-weight dissolved organic matter on nitrogen dynamics in the Mississippi River plume. Marine Ecology - Progress Series, 1996, 133, 287-297.	1.9	44
137	Major contribution from mesopelagic plankton to heterotrophic metabolism in the upper ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 2069-2085.	1.4	42
138	Biological hot spots and the accumulation of marine dissolved organic matter in a highly productive ocean margin. Limnology and Oceanography, 2016, 61, 1287-1300.	3.1	40
139	Kinetics of microbial degradation of vascular plant material in two wetland ecosystems. Oecologia, 1989, 79, 158-167.	2.0	38
140	Mineralization of Organic Material and Bacterial Dynamics in Mississippi River Plume Water. Estuaries and Coasts, 1994, 17, 816.	1.7	38
141	Climate Warming Can Accelerate Carbon Fluxes without Changing Soil Carbon Stocks. Frontiers in Earth Science, 2017, 5, .	1.8	38
142	Biochemical Indicators for the Bioavailability of Organic Carbon in Ground Water. Ground Water, 2009, 47, 108-121.	1.3	37
143	Bioavailability and diagenetic state of dissolved organic matter in riparian groundwater. Journal of Geophysical Research, 2012, 117, .	3.3	37
144	Soil organic nitrogen cycling increases with temperature and precipitation along a boreal forest latitudinal transect. Biogeochemistry, 2016, 127, 397-410.	3.5	37

#	Article	IF	CITATIONS
145	Does oxygen exposure time control the extent of organic matter decomposition in peatlands?. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 897-909.	3.0	34
146	Thermophilic Anaerobic Biodegradation of [¹⁴ C]Lignin, [¹⁴ C]Cellulose, and [¹⁴ C]Lignocellulose Preparations. Applied and Environmental Microbiology, 1985, 50, 971-976.	3.1	34
147	Isolation of a Bacterium Capable of Degrading Peanut Hull Lignin. Applied and Environmental Microbiology, 1983, 46, 1201-1206.	3.1	33
148	Dynamics of bacterioplankton abundance and production in seagrass communities of a hypersaline lagoon. Marine Ecology - Progress Series, 1991, 73, 219-230.	1.9	33
149	Carbon Flow From Lignocellulose: A Simulation Analysis of a Detritus-Based Ecosystem. Ecology, 1988, 69, 1525-1536.	3.2	32
150	Characterization and Origin of Dissolved Organic Carbon in Yegua Ground Water in Brazos County, Texas. Ground Water, 2001, 39, 760-767.	1.3	32
151	Green Edge ice camp campaigns: understanding the processes controlling the under-ice Arctic phytoplankton spring bloom. Earth System Science Data, 2020, 12, 151-176.	9.9	32
152	What Is Refractory Organic Matter in the Ocean?. Frontiers in Marine Science, 2021, 8, .	2.5	31
153	Dissolved Oxygen as an Indicator of Bioavailable Dissolved Organic Carbon in Groundwater. Ground Water, 2012, 50, 230-241.	1.3	30
154	Temporal relationship between the deposition and microbial degradation of lignocellulosic detritus in a Georgia salt marsh and the Okefenokee Swamp. Microbial Ecology, 1986, 12, 291-298.	2.8	29
155	Sources, Distributions, and Dynamics of Dissolved Organic Matter in the Canada and Makarov Basins. Frontiers in Marine Science, 2016, 3, .	2.5	29
156	Sources and Transformations of Dissolved Lignin Phenols and Chromophoric Dissolved Organic Matter in Otsuchi Bay, Japan. Frontiers in Marine Science, 2016, 3, .	2.5	28
157	Ultra-Filtration for the Concentration of Bacteria, Viruses, and Dissolved Organic Matter. Geophysical Monograph Series, 0, , 181-185.	0.1	27
158	Importance of refractory ligands and their photodegradation for iron oceanic inventories and cycling. Marine and Freshwater Research, 2020, 71, 311.	1.3	25
159	Carbon conversion efficiency for bacterial growth on lignocellulose: Implications for detritusâ€based food webs. Limnology and Oceanography, 1988, 33, 1514-1526.	3.1	24
160	Chemical composition and in-vitro digestibility of thermochemically treated peanut hulls. Journal of the Science of Food and Agriculture, 1986, 37, 632-636.	3.5	23
161	DOC subgroup report. Marine Chemistry, 1993, 41, 11-21.	2.3	23
162	An implementation strategy to quantify the marine microbial carbon pump and its sensitivity to global change. National Science Review, 2018, 5, 474-480.	9.5	22

#	Article	IF	CITATIONS
163	Organic biomarkers for tracing carbon cycling in the Gulf of Papua (Papua New Guinea). Continental Shelf Research, 2004, 24, 2373-2394.	1.8	21
164	Dispersion and cycling of organic matter from the Sepik River outflow to the Papua New Guinea coast as determined from biomarkers. Organic Geochemistry, 2008, 39, 1747-1764.	1.8	21
165	Reactivity of hydroxyproline-rich glycoproteins and their potential as biochemical tracers of plant-derived nitrogen. Organic Geochemistry, 2013, 57, 11-22.	1.8	20
166	Bioavailable dissolved organic matter and biological hot spots during austral winter in <scp>A</scp> ntarctic waters. Journal of Geophysical Research: Oceans, 2017, 122, 508-520.	2.6	20
167	Strong linkages between surface and deep-water dissolved organic matter in the East/Japan Sea. Biogeosciences, 2017, 14, 2561-2570.	3.3	20
168	Variability of Dissolved Organic Carbon in Sediments of a Seagrass Bed and an Unvegetated Area within an Estuary in Southern Texas. Estuaries and Coasts, 1993, 16, 391.	1.7	19
169	A simple high performance liquid chromatography method for the measurement of nucleobases and the RNA and DNA content of cellular material. Limnology and Oceanography: Methods, 2012, 10, 608-616.	2.0	19
170	Temperature, oxygen, and vegetation controls on decomposition in a James Bay peatland. Global Biogeochemical Cycles, 2015, 29, 729-743.	4.9	18
171	Variable ÎƊ values among major biochemicals in plants: Implications for environmental studies. Geochimica Et Cosmochimica Acta, 2013, 111, 117-127.	3.9	16
172	Radiocarbon in dissolved organic and inorganic carbon of the Arctic Ocean. Geophysical Research Letters, 2017, 44, 2369-2376.	4.0	16
173	Biochemical and structural controls on the decomposition dynamics of boreal upland forest moss tissues. Biogeosciences, 2018, 15, 6731-6746.	3.3	15
174	Effect of P-limitation on prokaryotic and viral production in surface waters of the Northwestern Mediterranean Sea. Journal of Plankton Research, 2015, 37, 16-20.	1.8	13
175	Spatial abundance distribution of prokaryotes is associated with dissolved organic matter composition and ecosystem function. Limnology and Oceanography, 2021, 66, 575-587.	3.1	13
176	Biochemical evidence for minimal vegetation change in peatlands of the West Siberian Lowland during the Medieval Climate Anomaly and Little Ice Age. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 808-825.	3.0	12
177	Insights into the origins, molecular characteristics and distribution of iron-binding ligands in the Arctic Ocean. Marine Chemistry, 2021, 231, 103936.	2.3	12
178	Effects of Acid Stress on Aerobic Decomposition of Algal and Aquatic Macrophyte Detritus: Direct Comparison in a Radiocarbon Assay. Applied and Environmental Microbiology, 1990, 56, 237-244.	3.1	12
179	Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater. Biogeosciences, 2014, 11, 5349-5363.	3.3	11
180	The MALINA oceanographic expedition: how do changes in ice cover, permafrost and UV radiation impact biodiversity and biogeochemical fluxes in the Arctic Ocean?. Earth System Science Data, 2021, 13, 1561-1592.	9.9	11

#	Article	IF	CITATIONS
181	The removal kinetics of dissolved organic matter and the optical clarity of groundwater. Hydrogeology Journal, 2016, 24, 1413-1422.	2.1	10
182	Panâ€Arctic Distribution of Bioavailable Dissolved Organic Matter and Linkages With Productivity in Ocean Margins. Geophysical Research Letters, 2018, 45, 1490-1498.	4.0	10
183	Predicting carbon cycle feedbacks to climate: Integrating the right tools for the job. Eos, 2012, 93, 188-188.	0.1	9
184	Reply to comment: Controls on turnover of marine dissolved organic matter—testing the null hypothesis of purely concentrationâ€driven uptake. Limnology and Oceanography, 2022, 67, 680-683.	3.1	8
185	Chemical and Bacterial Pretreatment of Lignocellulosic Material to Increase Ruminant Digestibility. Nature Biotechnology, 1984, 2, 805-807.	17.5	7
186	Dynamics of microbial biomass and activity in five habitats of the Okefenokee Swamp ecosystem. Microbial Ecology, 1987, 14, 203-217.	2.8	7
187	Mass balance estimates of carbon export in different water masses of the Chukchi Sea shelf. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 130, 88-99.	1.4	7
188	Marine Organic Matter. , 0, , 407-449.		6
189	Amino acids and amino sugars as molecular indicators of the origins and alterations of organic matter in buried tephra layers. Geoderma, 2020, 373, 114449.	5.1	5
190	Effects of temperature on microbial utilization of lignocellulosic detritus in a thermally impacted stream. Microbial Ecology, 1988, 16, 323-330.	2.8	4
191	A recent project shows that the microbial carbon pump is a primary mechanism driving ocean carbon uptake. National Science Review, 2018, 5, 458-458.	9.5	4
192	Chemical composition and in-vitro digestibility of biologically degraded peanut hulls. Journal of the Science of Food and Agriculture, 1986, 37, 637-651.	3.5	3
193	Potentially Bioavailable Natural Organic Carbon and Hydrolyzable Amino Acids in Aquifer Sediments. Ground Water Monitoring and Remediation, 2012, 32, 92-95.	0.8	2
194	Comparative analyses of DOC and DON in natural water. Marine Chemistry, 1994, 46, 407-408.	2.3	0
195	Corrigendum to "Photoproduction of ammonium in the southeastern Beaufort Sea and its biogeochemical implications" published in Biogeosciences, 9, 3047–3061, 2012. Biogeosciences, 2012, 9, 3475-3475.	3.3	0
196	Modeling the Persistence of Lignocellulosic Detritus in Wetland Ecosystems. , 1987, , 357-374.		0
197	Adaptation of Phytoplankton-Degrading Microbial Communities to Thermal Reactor Effluent in a New Cooling Reservoir. Applied and Environmental Microbiology, 1988, 54, 1481-1487.	3.1	0