
Andrew P Rice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2987588/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clearance of HIV-1 or SIV reservoirs by promotion of apoptosis and inhibition of autophagy: Targeting intracellular molecules in cure-directed strategies. Journal of Leukocyte Biology, 2022, 112, 1245-1259.	3.3	7
2	Identification of celastrol as a novel HIV-1 latency reversal agent by an image-based screen. PLoS ONE, 2021, 16, e0244771.	2.5	1
3	SARS-CoV-2 likely targets cellular PDZ proteins: a common tactic of pathogenic viruses. Future Virology, 2021, 16, 375-377.	1.8	9
4	Serum IgG anti-SARS-CoV-2 Binding Antibody Level Is Strongly Associated With IgA and Functional Antibody Levels in Adults Infected With SARS-CoV-2. Frontiers in Immunology, 2021, 12, 693462.	4.8	6
5	PACS1 is an HIV-1 cofactor that functions in Rev-mediated nuclear export of viral RNA. Virology, 2020, 540, 88-96.	2.4	12
6	Influenza A Virus Protein NS1 Exhibits Strain-Independent Conformational Plasticity. Journal of Virology, 2019, 93, .	3.4	11
7	Unexpected Mutations in HIV-1 That Confer Resistance to the Tat Inhibitor Didehydro-Cortistatin A. MBio, 2019, 10, .	4.1	7
8	Investigation of temporal and spatial heterogeneities of the immune responses to Bordetella pertussis infection in the lung and spleen of mice via analysis and modeling of dynamic microarray gene expression data. Infectious Disease Modelling, 2019, 4, 215-226.	1.9	1
9	Regulation of cyclin T1 during HIV replication and latency establishment in human memory CD4 T cells. Virology Journal, 2019, 16, 22.	3.4	8
10	Machine learning algorithms for systematic review: reducing workload in a preclinical review of animal studies and reducing human screening error. Systematic Reviews, 2019, 8, 23.	5.3	90
11	Roles of CDKs in RNA polymerase II transcription of the HIV-1 genome. Transcription, 2019, 10, 111-117.	3.1	23
12	Proteomic Profiling of a Primary CD4 ⁺ T Cell Model of HIV-1 Latency Identifies Proteins Whose Differential Expression Correlates with Reactivation of Latent HIV-1. AIDS Research and Human Retroviruses, 2018, 34, 103-110.	1.1	4
13	Transcriptional Control and Latency of Retroviruses. , 2018, , 199-227.		0
14	Inducible Lung Epithelial Resistance Requires Multisource Reactive Oxygen Species Generation To Protect against Viral Infections. MBio, 2018, 9, .	4.1	32
15	HIV-1 replication in CD4+ T cells exploits the down-regulation of antiviral NEAT1 long non-coding RNAs following T cell activation. Virology, 2018, 522, 193-198.	2.4	33
16	Assays for precise quantification of total (including short) and elongated HIV-1 transcripts. Journal of Virological Methods, 2017, 242, 1-8.	2.1	31
17	Crosstalk between histone modifications indicates that inhibition of arginine methyltransferase CARM1 activity reverses HIV latency. Nucleic Acids Research, 2017, 45, 9348-9360.	14.5	39
18	A scalable algorithm for structure identification of complex gene regulatory network from temporal expression data. BMC Bioinformatics, 2017, 18, 74.	2.6	5

#	Article	IF	CITATIONS
19	The HIV-1 Tat Protein: Mechanism of Action and Target for HIV-1 Cure Strategies. Current Pharmaceutical Design, 2017, 23, 4098-4102.	1.9	68
20	Cyclin-dependent kinases as therapeutic targets for HIV-1 infection. Expert Opinion on Therapeutic Targets, 2016, 20, 1453-1461.	3.4	17
21	Challenges and strategies for the eradication of the HIV reservoir. Current Opinion in Immunology, 2016, 42, 65-70.	5.5	54
22	Short Communication: The Broad-Spectrum Histone Deacetylase Inhibitors Vorinostat and Panobinostat Activate Latent HIV in CD4 ⁺ T Cells In Part Through Phosphorylation of the T-Loop of the CDK9 Subunit of P-TEFb. AIDS Research and Human Retroviruses, 2016, 32, 169-173.	1.1	21
23	Roles of <scp>microRNAs</scp> and longâ€noncoding <scp>RNAs</scp> in human immunodeficiency virus replication. Wiley Interdisciplinary Reviews RNA, 2015, 6, 661-670.	6.4	21
24	Subversion of Cell Cycle Regulatory Mechanisms by HIV. Cell Host and Microbe, 2015, 17, 736-740.	11.0	15
25	Mining the Human Complexome Database Identifies RBM14 as an XPO1-Associated Protein Involved in HIV-1 Rev Function. Journal of Virology, 2015, 89, 3557-3567.	3.4	27
26	Short Communication: SAHA (Vorinostat) Induces CDK9 Thr-186 (T-Loop) Phosphorylation in Resting CD4+ T Cells: Implications for Reactivation of Latent HIV. AIDS Research and Human Retroviruses, 2015, 31, 137-141.	1.1	13
27	The Influenza A Virus Protein NS1 Displays Structural Polymorphism. Journal of Virology, 2014, 88, 4113-4122.	3.4	69
28	miR-132 enhances HIV-1 replication. Virology, 2013, 438, 1-4.	2.4	71
29	Reactivation of latent HIV: do all roads go through P-TEFb?. Future Virology, 2013, 8, 649-659.	1.8	22
30	Cyclin T1 and CDK9 T-Loop Phosphorylation Are Downregulated during Establishment of HIV-1 Latency in Primary Resting Memory CD4 ⁺ T Cells. Journal of Virology, 2013, 87, 1211-1220.	3.4	104
31	P-TEFb as a target to reactivate latent HIV. Cell Cycle, 2013, 12, 392-393.	2.6	9
32	MicroRNA-Mediated Restriction of HIV-1 in Resting CD4+ T Cells and Monocytes. Viruses, 2012, 4, 1390-1409.	3.3	39
33	Regulation of Cyclin T1 and HIV-1 Replication by MicroRNAs in Resting CD4 ⁺ T Lymphocytes. Journal of Virology, 2012, 86, 3244-3252.	3.4	153
34	Phosphatase PPM1A negatively regulates P-TEFb function in resting CD4+ T cells and inhibits HIV-1 gene expression. Retrovirology, 2012, 9, 52.	2.0	27
35	Identification of novel CDK9 and Cyclin T1-associated protein complexes (CCAPs) whose siRNA depletion enhances HIV-1 Tat function. Retrovirology, 2012, 9, 90.	2.0	19
36	Regulation of Interferon-β by MAGI-1 and Its Interaction with Influenza A Virus NS1 Protein with ESEV PBM. PLoS ONE, 2012, 7, e41251.	2.5	21

#	Article	IF	CITATIONS
37	Making a Short Story Long: Regulation of P-TEFb and HIV-1 Transcriptional Elongation in CD4+ T Lymphocytes and Macrophages. Biology, 2012, 1, 94-115.	2.8	15
38	Cdk9 Tâ€loop phosphorylation is regulated by the calcium signaling pathway. Journal of Cellular Physiology, 2012, 227, 609-617.	4.1	34
39	Epstein-Barr Virus BART9 miRNA Modulates LMP1 Levels and Affects Growth Rate of Nasal NK T Cell Lymphomas. PLoS ONE, 2011, 6, e27271.	2.5	61
40	Limited redundancy in genes regulated by Cyclin T2 and Cyclin T1. BMC Research Notes, 2011, 4, 260.	1.4	16
41	Emerging Theme: Cellular PDZ Proteins as Common Targets of Pathogenic Viruses. Journal of Virology, 2011, 85, 11544-11556.	3.4	175
42	The Avian Influenza Virus NS1 ESEV PDZ Binding Motif Associates with Dlg1 and Scribble To Disrupt Cellular Tight Junctions. Journal of Virology, 2011, 85, 10639-10648.	3.4	102
43	Mini ways to stop a virus: microRNAs and HIV-1 replication. Future Virology, 2011, 6, 209-221.	1.8	23
44	Tâ€loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active Pâ€TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes. Journal of Cellular Physiology, 2010, 224, 84-93.	4.1	39
45	The ESEV PDZ-Binding Motif of the Avian Influenza A Virus NS1 Protein Protects Infected Cells from Apoptosis by Directly Targeting Scribble. Journal of Virology, 2010, 84, 11164-11174.	3.4	90
46	55K isoform of CDK9 associates with Ku70 and is involved in DNA repair. Biochemical and Biophysical Research Communications, 2010, 397, 245-250.	2.1	38
47	The HIV-1 Tat Team Gets Bigger. Cell Host and Microbe, 2010, 7, 179-181.	11.0	2
48	Characterization of Cdk9 T-loop phosphorylation in resting and activated CD4+ T lymphocytes. Journal of Leukocyte Biology, 2009, 86, 1345-1350.	3.3	56
49	Dysregulation of Positive Transcription Elongation Factor b and Myocardial Hypertrophy. Circulation Research, 2009, 104, 1327-1329.	4.5	10
50	miR-198 Inhibits HIV-1 Gene Expression and Replication in Monocytes and Its Mechanism of Action Appears To Involve Repression of Cyclin T1. PLoS Pathogens, 2009, 5, e1000263.	4.7	203
51	Latently-infected CD4+ T cells are enriched for HIV-1 Tat variants with impaired transactivation activity. Virology, 2009, 387, 98-108.	2.4	62
52	Phosphatase PPM1A Regulates Phosphorylation of Thr-186 in the Cdk9 T-loop. Journal of Biological Chemistry, 2008, 283, 33578-33584.	3.4	66
53	Cyclin T1-Dependent Genes in Activated CD4+ T and Macrophage Cell Lines Appear Enriched in HIV-1 Co-Factors. PLoS ONE, 2008, 3, e3146.	2.5	32
54	Targeting protein–protein interactions for HIV therapeutics. Future HIV Therapy, 2007, 1, 369-385.	0.4	9

#	Article	IF	CITATIONS
55	Induction of the HIV-1 Tat co-factor cyclin T1 during monocyte differentiation is required for the regulated expression of a large portion of cellular mRNAs. Retrovirology, 2006, 3, 32.	2.0	25
56	Effects of prostratin on Cyclin T1/P-TEFb function and the gene expression profile in primary resting CD4+T cells. Retrovirology, 2006, 3, 66.	2.0	74
57	Cellular cofactors and HIV-1 infectionin vivo. Future Virology, 2006, 1, 337-347.	1.8	2
58	Interleukin-10 inhibits HIV-1 LTR-directed gene expression in human macrophages through the induction of cyclin T1 proteolysis. Virology, 2006, 352, 485-492.	2.4	29
59	Cyclin T1 but not cyclin T2a is induced by a post-transcriptional mechanism in PAMP-activated monocyte-derived macrophages. Journal of Leukocyte Biology, 2006, 79, 388-396.	3.3	31
60	Integration of Human Immunodeficiency Virus Type 1 in Untreated Infection Occurs Preferentially within Genes. Journal of Virology, 2006, 80, 7765-7768.	3.4	36
61	siRNA depletion of 7SK snRNA induces apoptosis but does not affect expression of the HIV-1 LTR or P-TEFb-dependent cellular genes. Journal of Cellular Physiology, 2005, 205, 463-470.	4.1	33
62	Identification of LKLF-regulated genes in quiescent CD4 T lymphocytes. Molecular Immunology, 2005, 42, 627-641.	2.2	51
63	Human Immunodeficiency Virus Type 1 Infection Induces Cyclin T1 Expression in Macrophages. Journal of Virology, 2004, 78, 8114-8119.	3.4	40
64	HIV-1 infection and regulation of Tat function in macrophages. International Journal of Biochemistry and Cell Biology, 2004, 36, 1767-1775.	2.8	22
65	Isolation and characterization of the human DC-SIGN and DC-SIGNR promoters. Gene, 2003, 313, 149-159.	2.2	34
66	Increased association of 7SK snRNA with Tat cofactor P-TEFb following activation of peripheral blood lymphocytes. Aids, 2003, 17, 2429-2436.	2.2	32
67	Regulation of TAK / P-TEFb in CD4+ T Lymphocytes and Macrophages. Current HIV Research, 2003, 1, 395-404.	O.5	59
68	Transient Induction of Cyclin T1 during Human Macrophage Differentiation Regulates Human Immunodeficiency Virus Type 1 Tat Transactivation Function. Journal of Virology, 2002, 76, 10579-10587.	3.4	72
69	Antiapoptotic Function of Cdk9 (TAK/P-TEFb) in U937 Promonocytic Cells. Journal of Virology, 2001, 75, 1220-1228.	3.4	48
70	Induction of TAK (Cyclin T1/P-TEFb) in Purified Resting CD4 + T Lymphocytes by Combination of Cytokines. Journal of Virology, 2001, 75, 11336-11343.	3.4	99
71	Isolation and characterization of the human cyclin T1 promoter. Gene, 2000, 252, 39-49.	2.2	13
72	Genomic organization and characterization of promoter function of the human CDK9 gene. Gene, 2000, 252, 51-59.	2.2	24

#	Article	IF	CITATIONS
73	Tat-Associated Kinase, TAK, Activity Is Regulated by Distinct Mechanisms in Peripheral Blood Lymphocytes and Promonocytic Cell Lines. Journal of Virology, 1998, 72, 9881-9888.	3.4	132
74	PITALRE, the Catalytic Subunit of TAK, Is Required for Human Immunodeficiency Virus Tat Transactivation In Vivo. Journal of Virology, 1998, 72, 4448-4453.	3.4	111
75	RNAs Selected in vitro by the HIV-2 Tat Protein. Journal of Biomedical Science, 1997, 4, 28-34.	7.0	0
76	RNAs selected in vitro by the HIV-2 tat protein. Journal of Biomedical Science, 1997, 4, 28-34.	7.0	7
77	Wild-Type and Transactivation-Defective Mutants of Human Immunodeficiency Virus Type 1 Tat Protein Bind Human TATA-Binding Protein In Vitro. Journal of Acquired Immune Deficiency Syndromes, 1996, 12, 128-138.	0.3	5
78	HIV-1 Tat protein is able to efficiently transactivate the HIV-2 LTR through a TAR RNA element lacking both dinucleotide bulge binding sites. Virology, 1995, 206, 673-678.	2.4	7
79	Exon2 of HIV-2 Tat Contributes to transactivation of the HIV-2 LTR by increasing binding affinity to HIV-2 TAR RNA. Nucleic Acids Research, 1994, 22, 4405-4413.	14.5	26
80	Functional Significance of the Dinucleotide Bulge in Stem-Loop1 and Stem-Loop2 of HIV-2 TAR RNA. Virology, 1994, 202, 202-211.	2.4	21
81	Specific Interaction of the Human Immunodeficiency Virus Tat Proteins with a Cellular Protein Kinase. Virology, 1993, 197, 601-608.	2.4	143
82	Tat protein of human immunodeficiency virus type 1 is a monomer when expressed in mammalian cells. Virology, 1991, 185, 451-454.	2.4	28
83	Regulation of HIV-1 Gene Expression by the Tat Protein and the TAR Region. , 1991, , 93-105.		0
84	HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell, 1989, 59, 283-292.	28.9	653
85	Transcriptional but not translational regulation of HIV-1 by the tat gene product. Nature, 1988, 332, 551-553.	27.8	192