Hao Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2986166/publications.pdf

Version: 2024-02-01

158	12,626	55	109
papers	citations	h-index	g-index
162	162	162	15915
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	3D carbon based nanostructures for advanced supercapacitors. Energy and Environmental Science, 2013, 6, 41-53.	30.8	1,389
2	Mesoporous Carbon Incorporated Metal Oxide Nanomaterials as Supercapacitor Electrodes. Advanced Materials, 2012, 24, 4197-4202.	21.0	548
3	Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chemical Communications, 2012, 48, 4465.	4.1	544
4	2D Monolayer MoS ₂ –Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage. Advanced Materials, 2015, 27, 3687-3695.	21.0	504
5	Rational Design of MnO/Carbon Nanopeapods with Internal Void Space for High-Rate and Long-Life Li-lon Batteries. ACS Nano, 2014, 8, 6038-6046.	14.6	420
6	3D Ordered Macroporous MoS ₂ @C Nanostructure for Flexible Liâ€lon Batteries. Advanced Materials, 2017, 29, 1603020.	21.0	350
7	High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy and Environmental Science, 2011, 4, 1813.	30.8	315
8	Tunable Rare Earth fcu -MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. Journal of the American Chemical Society, 2015, 137, 5034-5040.	13.7	308
9	A green and high energy density asymmetric supercapacitor based on ultrathin MnO ₂ nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale, 2012, 4, 807-812.	5.6	276
10	High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core–shell nanostructures. Chemical Communications, 2012, 48, 2606.	4.1	244
11	Metal–Organic Framework-Based Separators for Enhancing Li–S Battery Stability: Mechanism of Mitigating Polysulfide Diffusion. ACS Energy Letters, 2017, 2, 2362-2367.	17.4	229
12	Ultraâ€Tuning of the Rareâ€Earth fcuâ€MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins. Angewandte Chemie - International Edition, 2015, 54, 14353-14358.	13.8	222
13	Lymph node targeting strategies to improve vaccination efficacy. Journal of Controlled Release, 2017, 267, 47-56.	9.9	207
14	Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy and Environmental Science, 2021, 14, 5228-5259.	30.8	198
15	2D Nanospace Confined Synthesis of Pseudocapacitanceâ€Dominated MoS ₂ â€inâ€Ti ₃ C ₂ Superstructure for Ultrafast and Stable Li/Naâ€ion Batteries. Advanced Functional Materials, 2018, 28, 1804306.	14.9	194
16	Fluorination-enabled Reconstruction of NiFe Electrocatalysts for Efficient Water Oxidation. Nano Letters, 2021, 21, 492-499.	9.1	190
17	Targeted delivery of low-dose dexamethasone using PCL–PEG micelles for effective treatment of rheumatoid arthritis. Journal of Controlled Release, 2016, 230, 64-72.	9.9	171
18	A reticular chemistry guide for the design of periodic solids. Nature Reviews Materials, 2021, 6, 466-487.	48.7	166

#	Article	IF	CITATIONS
19	Asymmetric pore windows in MOF membranes for natural gas valorization. Nature, 2022, 606, 706-712.	27.8	163
20	Highly Stretchable Conductors Integrated with a Conductive Carbon Nanotube/Graphene Network and 3D Porous Poly(dimethylsiloxane). Advanced Functional Materials, 2014, 24, 7548-7556.	14.9	162
21	Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy. Biomaterials, 2017, 122, 10-22.	11.4	161
22	Unsaturated Sulfur Edge Engineering of Strongly Coupled MoS ₂ Nanosheet–Carbon Macroporous Hybrid Catalyst for Enhanced Hydrogen Generation. Advanced Energy Materials, 2019, 9, 1802553.	19.5	159
23	Polyaniline–MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors. Journal of Materials Chemistry, 2012, 22, 16939.	6.7	157
24	Surface enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode toward Li-ion batteries. Nature Communications, 2021, 12, 4564.	12.8	153
25	Reticular Chemistry 3.2: Typical Minimal Edge-Transitive <i>Derived</i> and <i>Related</i> Nets for the Design and Synthesis of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8039-8065.	47.7	149
26	CsPbBr ₃ Perovskite Quantum Dots-Based Monolithic Electrospun Fiber Membrane as an Ultrastable and Ultrasensitive Fluorescent Sensor in Aqueous Medium. Journal of Physical Chemistry Letters, 2016, 7, 4253-4258.	4.6	137
27	Hierarchical porous nanostructures assembled from ultrathin MnO ₂ nanoflakes with enhanced supercapacitive performances. Journal of Materials Chemistry, 2012, 22, 2751-2756.	6.7	135
28	Intermediate Binding Control Using Metal–Organic Frameworks Enhances Electrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2020, 142, 21513-21521.	13.7	133
29	Enriching the Reticular Chemistry Repertoire: Merged Nets Approach for the Rational Design of Intricate Mixed-Linker Metal–Organic Framework Platforms. Journal of the American Chemical Society, 2018, 140, 8858-8867.	13.7	129
30	Confined Synthesis of FeS ₂ Nanoparticles Encapsulated in Carbon Nanotube Hybrids for Ultrastable Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2016, 4, 4251-4255.	6.7	126
31	Moâ€Based Ultrasmall Nanoparticles on Hierarchical Carbon Nanosheets for Superior Lithium Ion Storage and Hydrogen Generation Catalysis. Advanced Energy Materials, 2017, 7, 1602782.	19.5	123
32	Tailoring polymeric hybrid micelles with lymph node targeting ability to improve the potency of cancer vaccines. Biomaterials, 2017, 122, 105-113.	11.4	107
33	Applying the Power of Reticular Chemistry to Finding the Missing alb-MOF Platform Based on the (6,12)-Coordinated Edge-Transitive Net. Journal of the American Chemical Society, 2017, 139, 3265-3274.	13.7	104
34	Nanostructured Ternary Nanocomposite of rGO/CNTs/MnO ₂ for High-Rate Supercapacitors. ACS Sustainable Chemistry and Engineering, 2014, 2, 70-74.	6.7	102
35	2D MoS ₂ /polyaniline heterostructures with enlarged interlayer spacing for superior lithium and sodium storage. Journal of Materials Chemistry A, 2017, 5, 5383-5389.	10.3	102
36	Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities. Advanced Functional Materials, 2021, 31, 2010445.	14.9	102

#	Article	IF	Citations
37	Enabling stable MnO ₂ matrix for aqueous zinc-ion battery cathodes. Journal of Materials Chemistry A, 2020, 8, 22075-22082.	10.3	101
38	Isoreticular rare earth fcu-MOFs for the selective removal of H2S from CO2 containing gases. Chemical Engineering Journal, 2017, 324, 392-396.	12.7	98
39	BiPO ₄ â€Derived 2D Nanosheets for Efficient Electrocatalytic Reduction of CO ₂ to Liquid Fuel. Angewandte Chemie - International Edition, 2021, 60, 7681-7685.	13.8	98
40	Turning the Old Adjuvant from Gel to Nanoparticles to Amplify CD8 ⁺ T Cell Responses. Advanced Science, 2018, 5, 1700426.	11.2	93
41	Promoting CO2 methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. Nature Communications, 2020, 11, 6190.	12.8	93
42	Valuing Metal–Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents. Advanced Materials, 2017, 29, 1702953.	21.0	88
43	Faceâ€toâ€Face Contact and Openâ€Void Coinvolved Si/C Nanohybrids Lithiumâ€Ion Battery Anodes with Extremely Long Cycle Life. Advanced Functional Materials, 2015, 25, 5395-5401.	14.9	85
44	Cationic micelle delivery of Trp2 peptide for efficient lymphatic draining and enhanced cytotoxic T-lymphocyte responses. Journal of Controlled Release, 2015, 200, 1-12.	9.9	84
45	Continuous oxygen vacancy engineering of the Co ₃ O ₄ layer for an enhanced alkaline electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 13506-13510.	10.3	78
46	Lightâ€Motivated SnO ₂ /TiO ₂ Heterojunctions Enabling the Breakthrough in Energy Density for Lithiumâ€ion Batteries. Advanced Materials, 2021, 33, e2103558.	21.0	73
47	Tailorable surface sulfur chemistry of mesoporous Ni ₃ S ₂ particles for efficient oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 7548-7552.	10.3	72
48	Positively charged Pt-based cocatalysts: an orientation for achieving efficient photocatalytic water splitting. Journal of Materials Chemistry A, 2020, 8, 17-26.	10.3	71
49	Functional mesoporous carbon nanotubes and their integration in situ with metal nanocrystals for enhanced electrochemical performances. Chemical Communications, 2011, 47, 8590.	4.1	66
50	Ultrathin MnO ₂ nanoflakes grown on N-doped carbon nanoboxes for high-energy asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 21337-21342.	10.3	66
51	Topology meets MOF chemistry for pore-aperture fine tuning: ftw -MOF platform for energy-efficient separations <i>via</i> adsorption kinetics or molecular sieving. Chemical Communications, 2018, 54, 6404-6407.	4.1	65
52	Hollow LiMn ₂ O ₄ Nanocones as Superior Cathode Materials for Lithiumâ€lon Batteries with Enhanced Power and Cycle Performances. Small, 2014, 10, 1096-1100.	10.0	63
53	Kirigami-patterned highly stretchable conductors from flexible carbon nanotube-embedded polymer films. Journal of Materials Chemistry C, 2017, 5, 8714-8722.	5.5	63
54	Integrated Reference Electrodes in Anion-Exchange-Membrane Electrolyzers: Impact of Stainless-Steel Gas-Diffusion Layers and Internal Mechanical Pressure. ACS Energy Letters, 2021, 6, 305-312.	17.4	63

#	Article	IF	Citations
55	Patterns of human social contact and contact with animals in Shanghai, China. Scientific Reports, 2019, 9, 15141.	3.3	61
56	Hydrothermal synthesis of hollow Mn2O3 nanocones as anode material for Li-ion batteries. RSC Advances, 2013, 3, 19778.	3.6	58
57	A graphene/carbon nanotube@Ï€-conjugated polymer nanocomposite for high-performance organic supercapacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 3880-3890.	10.3	58
58	Ultrafine V ₂ O ₃ Nanowire Embedded in Carbon Hybrids with Enhanced Lithium Storage Capability. Industrial & Engineering Chemistry Research, 2015, 54, 2960-2965.	3.7	54
59	Photoassisted Cobalt-Catalyzed Asymmetric Reductive Grignard-Type Addition of Aryl lodides. Journal of the American Chemical Society, 2022, 144, 8347-8354.	13.7	52
60	Peapod-like nickel@mesoporous carbon core-shell nanowires: a novel electrode material for supercapacitors. RSC Advances, 2011, 1, 954.	3.6	45
61	Nanospaceâ€confined synthesis of coconutâ€like SnS/C nanospheres for highâ€rate and stable lithiumâ€ion batteries. AICHE Journal, 2018, 64, 1965-1974.	3.6	45
62	Facile Fabrication of Robust Hydrogen Evolution Electrodes under High Current Densities via Pt@Cu Interactions. Advanced Functional Materials, 2021, 31, 2105579.	14.9	45
63	Triosephosphate isomerase 1 suppresses growth, migration and invasion of hepatocellular carcinoma cells. Biochemical and Biophysical Research Communications, 2017, 482, 1048-1053.	2.1	44
64	Mo-Triggered amorphous Ni ₃ S ₂ nanosheets as efficient and durable electrocatalysts for water splitting. Materials Chemistry Frontiers, 2018, 2, 1462-1466.	5.9	43
65	Revealing the Sudden Alternation in Pt@hâ∈BN Nanoreactors for Nearly 100% CO ₂ â€toâ€CH ₄ Photoreduction. Advanced Functional Materials, 2021, 31, 2010780.	14.9	43
66	Enriching the Reticular Chemistry Repertoire with Minimal Edge-Transitive Related Nets: Access to Highly Coordinated Metal–Organic Frameworks Based on Double Six-Membered Rings as Net-Coded Building Units. Journal of the American Chemical Society, 2019, 141, 20480-20489.	13.7	42
67	Extremely Hydrophobic POPs to Access Highly Porous Storage Media and Capturing Agent for Organic Vapors. CheM, 2019, 5, 180-191.	11.7	42
68	Supersaturated bridge-sulfur and vanadium co-doped MOS2 nanosheet arrays with enhanced sodium storage capability. Nano Research, 2021, 14, 74-80.	10.4	42
69	Hydrothermal synthesis of novel In2O3 microspheres for gas sensors. Chemical Communications, 2009, , 3618.	4.1	41
70	Stable field emission performance from urchin-like ZnO nanostructures. Nanotechnology, 2009, 20, 055706.	2.6	40
71	SnO2 nanorod@TiO2 hybrid material for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 8266-8272.	10.3	40
72	2D Metal Chalcogenides Incorporated into Carbon and their Assembly for Energy Storage Applications. Small, 2018, 14, e1800148.	10.0	40

#	Article	IF	Citations
73	Redox-mediated electrosynthesis of ethylene oxide from CO2 and water. Nature Catalysis, 2022, 5, 185-192.	34.4	40
74	Homologous V ₂ O ₃ /C box-in-box and V ₂ O ₅ box for lithium-ion full cells. Journal of Materials Chemistry A, 2016, 4, 12030-12035.	10.3	39
75	Salt-Templating Protocol To Realize Few-Layered Ultrasmall MoS ₂ Nanosheets Inlayed into Carbon Frameworks for Superior Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2016, 4, 1148-1153.	6.7	39
76	A novel antiviral lncRNA, EDAL, shields a T309 O-GlcNAcylation site to promote EZH2 lysosomal degradation. Genome Biology, 2020, 21, 228.	8.8	38
77	Intracellular redox potential-responsive micelles based on polyethylenimine-cystamine-poly(ε-caprolactone) block copolymer for enhanced miR-34a delivery. Polymer Chemistry, 2015, 6, 1952-1960.	3.9	37
78	Graphene supported mesoporous single crystal silicon on Cu foam as a stable lithium-ion battery anode. Journal of Materials Chemistry A, 2014, 2, 16360-16364.	10.3	36
79	One-step synthesis of SnO _x nanocrystalline aggregates encapsulated by amorphous TiO ₂ as an anode in Li-ion battery. Journal of Materials Chemistry A, 2015, 3, 9982-9988.	10.3	36
80	A fatigue damage accumulation model for reliability analysis of engine components under combined cycle loadings. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 1880-1892.	3.4	36
81	Stable Core Shell Co ₃ Fe ₇ –CoFe ₂ O ₄ Nanoparticles Synthesized via Flame Spray Pyrolysis Approach. Industrial & Description Chemistry Research, 2012, 51, 11157-11162.	3.7	35
82	Self-assembling few-layer MoS ₂ nanosheets on a CNT backbone for high-rate and long-life lithium-ion batteries. RSC Advances, 2014, 4, 40368-40372.	3.6	35
83	<i>110th Anniversary: </i> Concurrently Coating and Doping High-Valence Vanadium in Nickel-Rich Lithiated Oxides for High-Rate and Stable Lithium-Ion Batteries. Industrial & Deprimental Chemistry Research, 2019, 58, 4108-4115.	3.7	33
84	Mixed Solvents Assisted Flame Spray Pyrolysis Synthesis of TiO ₂ Hierarchically Porous Hollow Spheres for Dye-Sensitized Solar Cells. Industrial & Engineering Chemistry Research, 2013, 52, 11029-11035.	3.7	32
85	Minimal edge-transitive nets for the design and construction of metal–organic frameworks. Faraday Discussions, 2017, 201, 127-143.	3.2	32
86	Introducing a Cantellation Strategy for the Design of Mesoporous Zeolite-like Metal–Organic Frameworks: Zr-sod-ZMOFs as a Case Study. Journal of the American Chemical Society, 2020, 142, 20547-20553.	13.7	31
87	Extension of Surface Organometallic Chemistry to Metal–Organic Frameworks: Development of a Well-Defined Single Site [(≡Zr–Oâ^')W(â•O)(CH ₂ ^{<i>t</i>} Bu) ₃] Olefin Metathesis Catalyst. Journal of the American Chemical Society, 2020, 142, 16690-16703.	13.7	31
88	Edge-enriched MoS2@C/rGO film as self-standing anodes for high-capacity and long-life lithium-ion batteries. Science China Materials, 2021, 64, 96-104.	6.3	30
89	Dietary Keratan Sulfate from Shark Cartilage Modulates Gut Microbiota and Increases the Abundance of Lactobacillus spp Marine Drugs, 2016, 14, 224.	4.6	29
90	Gangliosides profiling in serum of breast cancer patient: GM3 as a potential diagnostic biomarker. Glycoconjugate Journal, 2019, 36, 419-428.	2.7	29

#	Article	IF	Citations
91	Heterogeneous MoSe ₂ /Nitrogenâ€Dopedâ€Carbon Nanoarrays: Engineering Atomic Interface for Potassiumâ€lon Storage. Advanced Functional Materials, 2022, 32, 2110223.	14.9	29
92	L1 ₂ Atomic Ordered Substrate Enhanced Pt-Skin Cu ₃ Pt Catalyst for Efficient Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38015-38023.	8.0	28
93	Phase-segregation induced growth of core–shell α-Fe2O3/SnO2 heterostructures for lithium-ion battery. CrystEngComm, 2013, 15, 6715.	2.6	27
94	Unique holey graphene/carbon dots frameworks by microwave-initiated chain reduction for high-performance compressible supercapacitors and reusable oil/water separation. Journal of Materials Chemistry A, 2019, 7, 22054-22062.	10.3	27
95	Comprehensive <i>N</i> -Glycome Profiling of Cells and Tissues for Breast Cancer Diagnosis. Journal of Proteome Research, 2019, 18, 2559-2570.	3.7	26
96	Multivalence-Ion Intercalation Enables Ultrahigh 1T Phase MoS ₂ Nanoflowers to Enhanced Sodium-Storage Performance. CCS Chemistry, 2021, 3, 1472-1482.	7.8	26
97	Isolated ultrasmall Bi nanosheets for efficient CO2-to-formate electroreduction. Nano Research, 2022, 15, 1409-1414.	10.4	26
98	EZH2 is required for mouse oocyte meiotic maturation by interacting with and stabilizing spindle assembly checkpoint protein BubRI. Nucleic Acids Research, 2016, 44, 7659-7672.	14.5	25
99	Optimized in vivo performance of acid-liable micelles for the treatment of rheumatoid arthritis by one single injection. Nano Research, 2019, 12, 421-428.	10.4	24
100	Highâ€damping polyurethane/hollow glass microspheres sound insulation materials: Preparation and characterization. Journal of Applied Polymer Science, 2021, 138, 49970.	2.6	23
101	Construction of core–shell Fe2O3@SnO2 nanohybrids for gas sensors by a simple flame-assisted spray process. RSC Advances, 2013, 3, 22373.	3.6	21
102	Engineering the outermost layers of TiO ₂ nanoparticles using <i>in situ</i> Mg doping in a flame aerosol reactor. AICHE Journal, 2017, 63, 870-880.	3.6	21
103	Aluminum nanoparticles deliver a dual-epitope peptide for enhanced anti-tumor immunotherapy. Journal of Controlled Release, 2022, 344, 134-146.	9.9	21
104	Highly compressible magnetic liquid marbles assembled from hydrophobic magnetic chain-like nanoparticles. RSC Advances, 2014, 4, 3162-3164.	3.6	20
105	In-situ growth of ultrathin MoS2 nanosheets on sponge-like carbon nanospheres for lithium-ion batteries. Science China Materials, 2018, 61, 1049-1056.	6.3	20
106	Optimizing SnO _{2â^'} <i>_x</i> /Fe ₂ O ₃ Heteroâ€Nanocrystals Toward Rapid and Highly Reversible Lithium Storage. Small, 2021, 17, e2103532.	10.0	20
107	Sn@Ni ₃ Sn ₄ embedded nanocable-like carbon hybrids for stable lithium-ion batteries. Chemical Communications, 2015, 51, 16373-16376.	4.1	19
108	Aerosol construction of multi-shelled LiMn ₂ O ₄ hollow microspheres as a cathode in lithium ion batteries. New Journal of Chemistry, 2016, 40, 1839-1844.	2.8	19

#	Article	IF	CITATIONS
109	Mesoporous Carbon Incorporated Metal Oxide Nanomaterials as Supercapacitor Electrodes (Adv.) Tj ETQq1 1 0.7	84314 rgB 21.0	T ₁₈ Overlock
110	Low full-cell voltage driven high-current-density selective paired formate electrosynthesis. Journal of Materials Chemistry A, 2022, 10, 1329-1335.	10.3	18
111	Enhancing electrocatalytic <scp>N₂</scp> reduction via tailoring the electric double layers. AICHE Journal, 2022, 68, .	3.6	17
112	In situ Au-catalyzed fabrication of branch-type SnO2 nanowires by a continuous gas-phase route for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 13814.	10.3	16
113	Large-scale, uniform, single-crystalline Cd(OH)2 hexagonal platelets for Cd-based functional applications. CrystEngComm, 2010, 12, 1726.	2.6	15
114	RDFNet: A Fast Caries Detection Method Incorporating Transformer Mechanism. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-9.	1.3	15
115	Toward Highâ€Performance CO ₂ â€toâ€C ₂ Electroreduction via Linker Tuning on MOFâ€Derived Catalysts. Small, 2022, 18, e2200720.	10.0	15
116	Introducing the Solvent Coâ€Intercalation Mechanism for Hard Carbon with Ultrafast Sodium Storage. Small, 2022, 18, e2108092.	10.0	14
117	Mosaic structure effect and superior catalytic performance of AgBr/Ag ₂ MoO ₄ composite materials. RSC Advances, 2016, 6, 94771-94779.	3.6	13
118	Construction of Nanoreactors Combining Two-Dimensional Hexagonal Boron Nitride (h-BN) Coating with Pt/Al ₂ O ₃ Catalyst toward Efficient Catalysis for CO Oxidation. Industrial & Discourse Company (appears) Research, 2018, 57, 13353-13361.	3.7	13
119	Nanospaceâ€Confinement Synthesis: Designing Highâ€Energy Anode Materials toward Ultrastable Lithiumâ€lon Batteries. Small, 2020, 16, e2002351.	10.0	13
120	Rectangular or square, tapered, and single-crystal PbTe nanotubes. Journal of Materials Chemistry, 2009, 19, 3063.	6.7	12
121	ZnOâ€"Si side-to-side biaxial nanowire heterostructures with improved luminescence. Journal of Materials Chemistry, 2009, 19, 7011.	6.7	12
122	Functional mesoporous carbon-coated CNT network for high-performance supercapacitors. New Journal of Chemistry, 2013, 37, 1294.	2.8	12
123	Rich Bismuthâ€Oxygen Bonds in Bismuth Derivatives from Bi ₂ S ₃ Pre atalysts Promote the Electrochemical Reduction of CO ₂ . ChemElectroChem, 2020, 7, 2864-2868.	3.4	12
124	Dual Rate-Modulation Approach for the Preparation of Crystalline Covalent Triazine Frameworks Displaying Efficient Sodium Storage. ACS Macro Letters, 2022, 11, 60-65.	4.8	12
125	Pyruvate Kinase M2 Mediates Glycolysis in the Lymphatic Endothelial Cells and Promotes the Progression of Lymphatic Malformations. American Journal of Pathology, 2021, 191, 204-215.	3.8	11
126	Derived CuSn Alloys from Heterointerfaces in Bimetallic Oxides Promote the CO ₂ Electroreduction to Formate. ChemElectroChem, 2021, 8, 1150-1155.	3.4	11

#	Article	IF	Citations
127	Electricity generation from water evaporation through highly conductive carbonized wood with abundant hydroxyls. Sustainable Energy and Fuels, 2022, 6, 2249-2255.	4.9	11
128	BiPO ₄ â€Derived 2D Nanosheets for Efficient Electrocatalytic Reduction of CO ₂ to Liquid Fuel. Angewandte Chemie, 2021, 133, 7759-7763.	2.0	10
129	Regulating Steric Hindrance in Redoxâ€Active Porous Organic Frameworks Achieves Enhanced Sodium Storage Performance. Small, 2022, 18, e2105927.	10.0	10
130	Co ₃ O ₄ Quantum Dot-Catalyzed Lithium Oxalate as a Capacity and Cycle-Life Enhancer in Lithium-Ion Full Cells. ACS Applied Energy Materials, 2022, 5, 2112-2120.	5.1	10
131	Enhancing Surface and Crystal Stability of the Ni-High NCA Cathode for High-Energy and Durable Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 2817-2824.	3.7	10
132	Revealing the Electrochemical Mechanism of Cationic/Anionic Redox on Li-Rich Layered Oxides via Controlling the Distribution of Primary Particle Size. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25796-25803.	8.0	8
133	Structure–Property–Energetics Relationship of Organosulfide Capture Using Cu(I)/Cu(II)-BTC Edited by Valence Engineering. Industrial & Engineering Chemistry Research, 2021, 60, 371-377.	3.7	8
134	Uniform, thin and continuous graphitic carbon tubular coatings on CdS nanowires. Journal of Materials Chemistry, 2009, 19, 1093.	6.7	7
135	Pt1.4Ni(100) Tetrapods with Enhanced Oxygen Reduction Reaction Activity. Catalysis Letters, 2021, 151, 212-220.	2.6	7
136	Defect engineered SnO ₂ nanoparticles enable strong CO ₂ chemisorption toward efficient electroconversion to formate. Dalton Transactions, 2022, 51, 3512-3519.	3.3	7
137	Revealing the Structure–Interaction–Dissolubility Relationships through Computational Investigation Coupled with Solubility Measurement: Toward Solvent Design for Organosulfide Capture. Industrial & Engineering Chemistry Research, 2022, 61, 7183-7192.	3.7	7
138	Batteries: 2D Monolayer MoS ₂ –Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage (Adv. Mater. 24/2015). Advanced Materials, 2015, 27, 3582-3582.	21.0	6
139	Engineering V ₂ O ₃ nanoarrays with abundant localized defects towards high-voltage aqueous supercapacitors. Journal of Materials Chemistry A, 2022, 10, 4825-4832.	10.3	6
140	Algorithm for an Effective Ratio of the Transverse Bending Rigidity Based on the Segment Joint Bending Stiffness. Applied Sciences (Switzerland), 2022, 12, 1901.	2.5	6
141	Gas Diffusion Layer with a Regular Hydrophilic Structure Boosts the Power Density of Proton Exchange Membrane Fuel Cells via the Construction of Water Highways. ACS Applied Materials & Long Interfaces, 2022, 14, 17578-17584.	8.0	6
142	Synthesis, microstructure evolution, and mechanical properties of (Cr _{1â€"<i>x</i>x} V _{<i>x</i>y}) ₂ AlC ceramics by in situ hot-pressing method. Journal of Materials Research, 2014, 29, 1168-1174.	2.6	5
143	Assembly and copper ions detection of highly sensible and stable hydroxyapatite nanocomposite fluorescence probe. Micro and Nano Letters, 2014, 9, 127-131.	1.3	5
144	Surface covalent sulfur enriching Ni active sites of Ni ₃ S ₂ nanoparticles for efficient oxygen evolution. New Journal of Chemistry, 2021, 45, 3210-3214.	2.8	5

#	Article	IF	CITATIONS
145	Programmable protein topology via <scp>SpyCatcherâ€SpyTag</scp> chemistry in oneâ€pot cellâ€free expression system. Protein Science, 2022, 31, .	7.6	5
146	Aerosol Spray Pyrolysis Synthesis of Porous Anatase TiO2 Microspheres with Tailored Photocatalytic Activity. Acta Metallurgica Sinica (English Letters), 2019, 32, 286-296.	2.9	4
147	A New Design Method of Shield Tunnel Based on the Concept of Minimum Bending Moment. Applied Sciences (Switzerland), 2022, 12, 1082.	2.5	4
148	Multi-shelled LiMn1.95Co0.05O4 cages with a tunable Mn oxidation state for ultra-high lithium storage. New Journal of Chemistry, 2018, 42, 3953-3960.	2.8	3
149	Computational fluid dynamics simulation and experimental analysis of ultrafine powder suspension. Rare Metals, 2020, 39, 850-860.	7.1	3
150	New insights on ultrafast Na[solv]+ coinserted graphite driven by an electric field. Science China Materials, 2021, 64, 2967-2975.	6.3	3
151	A Novel Ohmic-Loss Reduction Control Strategy for Planar Motor. IEEE Transactions on Magnetics, 2012, 48, 2997-3000.	2.1	2
152	A screening analysis of the GJB2 c.176 del 16 mutation responsible for hereditary deafness in a Chinese family. Journal of Otology, 2016, 11, 134-137.	1.0	2
153	Research progress in materials-oriented chemical engineering in China. Reviews in Chemical Engineering, 2019, 35, 917-927.	4.4	2
154	Regulating Steric Hindrance in Redoxâ€Active Porous Organic Frameworks Achieves Enhanced Sodium Storage Performance (Small 1/2022). Small, 2022, 18, 2270004.	10.0	2
155	Magnetic fields study of various planar Halbach permanent magnet array. , 2010, , .		1
156	Design and analysis of a novel ironless trapezoid winding array with single-sided and well sinusoidal magnetic field. , 2010, , .		1
157	Multivalent Ion Batteries: Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities (Adv. Funct. Mater. 13/2021). Advanced Functional Materials, 2021, 31, 2170089.	14.9	1
158	Calculation and investigation of end-effect for a high-precision planar magnetic levitation. , 2010, , .		0