List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2986065/publications.pdf Version: 2024-02-01

CHIH-LEN LIN

#	Article	IF	CITATIONS
1	A Study on Truncated Newton Methods for Linear Classification. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 2828-2841.	11.3	7
2	The H3.3 chaperone Hira complex orchestrates oocyte developmental competence. Development (Cambridge), 2022, 149, .	2.5	7
3	A 3D endometrial organotypic model simulating the acute inflammatory decidualisation initiation phase with epithelial induction of the key endometrial receptivity marker, integrin αVβ3. Human Reproduction Open, 2021, 2021, hoab034.	5.4	3
4	HIRA contributes to zygote formation in mice and is implicated in human 1PN zygote phenotype. Reproduction, 2021, 161, 697-707.	2.6	3
5	Depletion of nuclear LINE1 RNA in mouse ESCs and embryos. STAR Protocols, 2021, 2, 100726.	1.2	3
6	Parameter Selection for Linear Support Vector Regression. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 5639-5644.	11.3	25
7	Identifying the Translatome of Mouse NEBD-Stage Oocytes via SSP-Profiling; A Novel Polysome Fractionation Method. International Journal of Molecular Sciences, 2020, 21, 1254.	4.1	21
8	Newton Methods for Convolutional Neural Networks. ACM Transactions on Intelligent Systems and Technology, 2020, 11, 1-30.	4.5	1
9	A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity. Cell, 2018, 174, 391-405.e19.	28.9	381
10	An Efficient Alternating Newton Method for Learning Factorization Machines. ACM Transactions on Intelligent Systems and Technology, 2018, 9, 1-31.	4.5	4
11	Epigenetic reprogramming of the zygote in mice and men: on your marks, get set, go!. Reproduction, 2016, 152, R211-R222.	2.6	53
12	A Learning-Rate Schedule for Stochastic Gradient Methods to Matrix Factorization. Lecture Notes in Computer Science, 2015, , 442-455.	1.3	34
13	Fast Matrix-Vector Multiplications for Large-Scale Logistic Regression on Shared-Memory Systems. , 2015, , .		15
14	Chd1 is essential for the high transcriptional output and rapid growth of the mouse epiblast. Development (Cambridge), 2015, 142, 118-127.	2.5	73
15	A Fast Parallel Stochastic Gradient Method for Matrix Factorization in Shared Memory Systems. ACM Transactions on Intelligent Systems and Technology, 2015, 6, 1-24.	4.5	69
16	Unwind and transcribe: chromatin reprogramming in the early mammalian embryo. Current Opinion in Genetics and Development, 2015, 34, 17-23.	3.3	16
17	Warm Start for Parameter Selection of Linear Classifiers. , 2015, , .		13
18	Subsampled Hessian Newton Methods for Supervised Learning. Neural Computation, 2015, 27, 1766-1795.	2.2	12

#	Article	IF	CITATIONS
19	Distributed Newton Methods for Regularized Logistic Regression. Lecture Notes in Computer Science, 2015, , 690-703.	1.3	21
20	Improved Derivation Efficiency and Pluripotency of Stem Cells from the Refractory Inbred C57BL/6 Mouse Strain by Small Molecules. PLoS ONE, 2014, 9, e106916.	2.5	4
21	Large-scale Kernel RankSVM. , 2014, , .		26
22	Large-Scale Linear RankSVM. Neural Computation, 2014, 26, 781-817.	2.2	89
23	Incremental and decremental training for linear classification. , 2014, , .		38
24	Large-scale logistic regression and linear support vector machines using spark. , 2014, , .		44
25	Hira-Mediated H3.3 Incorporation Is Required for DNA Replication and Ribosomal RNA Transcription in the Mouse Zygote. Developmental Cell, 2014, 30, 268-279.	7.0	143
26	Somatic cells regulate maternal mRNA translation and developmental competence of mouse oocytes. Nature Cell Biology, 2013, 15, 1415-1423.	10.3	128
27	A Study on L2-Loss (Squared Hinge-Loss) Multiclass SVM. Neural Computation, 2013, 25, 1302-1323.	2.2	52
28	Comparison of Feature Selection Methods for Cross-Laboratory Microarray Analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 593-604.	3.0	14
29	A fast parallel SGD for matrix factorization in shared memory systems. , 2013, , .		95
30	Combination of feature engineering and ranking models for paper-author identification in KDD Cup 2013. , 2013, , .		10
31	Effective string processing and matching for author disambiguation. , 2013, , .		9
32	Dense Non-rigid Point-Matching Using Random Projections. , 2013, , .		9
33	Large-Scale Video Summarization Using Web-Image Priors. , 2013, , .		208
34	Histone variant H3.3 maintains a decondensed chromatin state essential for mouse preimplantation development. Development (Cambridge), 2013, 140, 3624-3634.	2.5	115
35	Large Linear Classification When Data Cannot Fit in Memory. ACM Transactions on Knowledge Discovery From Data, 2012, 5, 1-23.	3.5	34
36	Recent Advances of Large-Scale Linear Classification. Proceedings of the IEEE, 2012, 100, 2584-2603.	21.3	206

#	Article	IF	CITATIONS
37	Expression of HOXB genes is significantly different in acute myeloid leukemia with a partial tandem duplication of MLL vs. a MLL translocation: a cross-laboratory study. Cancer Genetics, 2011, 204, 252-259.	0.4	12
38	LIBSVM. ACM Transactions on Intelligent Systems and Technology, 2011, 2, 1-27.	4.5	25,138
39	Parallel Spectral Clustering in Distributed Systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33, 568-586.	13.9	443
40	Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning, 2011, 85, 41-75.	5.4	264
41	An improved GLMNET for 11-regularized logistic regression. , 2011, , .		25
42	Active learning strategies using SVMs. , 2010, , .		8
43	Large linear classification when data cannot fit in memory. , 2010, , .		33
44	Cross-generation and cross-laboratory predictions of Affymetrix microarrays by rank-based methods. Journal of Biomedical Informatics, 2008, 41, 570-579.	4.3	20
45	A sequential dual method for large scale multi-class linear svms. , 2008, , .		89
46	Parallel Spectral Clustering. Lecture Notes in Computer Science, 2008, , 374-389.	1.3	51
47	Trust region Newton methods for large-scale logistic regression. , 2007, , .		114
48	Projected Gradient Methods for Nonnegative Matrix Factorization. Neural Computation, 2007, 19, 2756-2779.	2.2	1,399
49	On the Convergence of Multiplicative Update Algorithms for Nonnegative Matrix Factorization. IEEE Transactions on Neural Networks, 2007, 18, 1589-1596.	4.2	302
50	A note on Platt's probabilistic outputs for support vector machines. Machine Learning, 2007, 68, 267-276.	5.4	637
51	A Study on SMO-Type Decomposition Methods for Support Vector Machines. IEEE Transactions on Neural Networks, 2006, 17, 893-908.	4.2	247
52	Ranking individuals by group comparisons. , 2006, , .		18
53	A tutorial onν-support vector machines. Applied Stochastic Models in Business and Industry, 2005, 21, 111-136.	1.5	367
54	Leave-One-Out Bounds for Support Vector Regression Model Selection. Neural Computation, 2005, 17, 1188-1222.	2.2	89

#	Article	IF	CITATIONS
55	Analysis of Switching Dynamics With Competing Support Vector Machines. IEEE Transactions on Neural Networks, 2004, 15, 720-727.	4.2	17
56	Decomposition Methods for Linear Support Vector Machines. Neural Computation, 2004, 16, 1689-1704.	2.2	36
57	Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based onn-peptide compositions. Protein Science, 2004, 13, 1402-1406.	7.6	768
58	Prediction of the bonding states of cysteines Using the support vector machines based on multiple feature vectors and cysteine state sequences. Proteins: Structure, Function and Bioinformatics, 2004, 55, 1036-1042.	2.6	56
59	Load Forecasting Using Support Vector Machines: A Study on EUNITE Competition 2001. IEEE Transactions on Power Systems, 2004, 19, 1821-1830.	6.5	654
60	Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel. Neural Computation, 2003, 15, 1667-1689.	2.2	1,354
61	A study on reduced support vector machines. IEEE Transactions on Neural Networks, 2003, 14, 1449-1459.	4.2	192
62	Radius Margin Bounds for Support Vector Machines with the RBF Kernel. Neural Computation, 2003, 15, 2643-2681.	2.2	182
63	Errata to "On the convergence of the decomposition method for support vector machines". IEEE Transactions on Neural Networks, 2002, 13, 1025.	4.2	1
64	A Note on the Decomposition Methods for Support Vector Regression. Neural Computation, 2002, 14, 1267-1281.	2.2	19
65	A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002, 13, 415-425.	4.2	5,170
66	A formal analysis of stopping criteria of decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 2002, 13, 1045-1052.	4.2	64
67	Asymptotic convergence of an SMO algorithm without any assumptions. IEEE Transactions on Neural Networks, 2002, 13, 248-250.	4.2	104
68	Training v-Support Vector Regression: Theory and Algorithms. Neural Computation, 2002, 14, 1959-1977.	2.2	264
69	A Simple Decomposition Method for Support Vector Machines. Machine Learning, 2002, 46, 291-314.	5.4	230
70	Analysis of Nonstationary Time Series Using Support Vector Machines. Lecture Notes in Computer Science, 2002, , 160-170.	1.3	3
71	Training v-Support Vector Classifiers: Theory and Algorithms. Neural Computation, 2001, 13, 2119-2147.	2.2	427
72	On the convergence of the decomposition method for support vector machines. IEEE Transactions on Neural Networks, 2001, 12, 1288-1298.	4.2	189

#	Article	IF	CITATIONS
73	Solving quadratic semi-infinite programming problems by using relaxed cutting-plane scheme. Journal of Computational and Applied Mathematics, 2001, 129, 89-104.	2.0	19
74	Solving General Capacity Problem by Relaxed Cutting Plane Approach. Annals of Operations Research, 2001, 103, 193-211.	4.1	4
75	Formulations of Support Vector Machines: A Note from an Optimization Point of View. Neural Computation, 2001, 13, 307-317.	2.2	80
76	The analysis of decomposition methods for support vector machines. IEEE Transactions on Neural Networks, 2000, 11, 1003-1008.	4.2	130
77	Efficient test-point selection for scan-based BIST. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1998, 6, 667-676.	3.1	19
78	Radius margin bounds for support vector machines with the RBF kernel. , 0, , .		1
79	Adaptive deterministic annealing for two applications: competing SVR of switching dynamics and travelling salesman problems. , 0, , .		0
80	Large-Scale Spectral Clustering with Map Reduce and MPI. , 0, , 240-261.		1