
Helen E Everett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2985614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vaccines That Reduce Viral Shedding Do Not Prevent Transmission of H1N1 Pandemic 2009 Swine Influenza A Virus Infection to Unvaccinated Pigs. Journal of Virology, 2021, 95, .	3.4	8
2	Inactivated pandemic 2009 H1N1 influenza A virus human vaccines have different efficacy after homologous challenge in the ferret model. Influenza and Other Respiratory Viruses, 2021, 15, 142-153.	3.4	5
3	Intranasal Infection of Ferrets with SARS-CoV-2 as a Model for Asymptomatic Human Infection. Viruses, 2021, 13, 113.	3.3	56
4	Respiratory and Intramuscular Immunization With ChAdOx2-NPM1-NA Induces Distinct Immune Responses in H1N1pdm09 Pre-Exposed Pigs. Frontiers in Immunology, 2021, 12, 763912.	4.8	5
5	Transmission dynamics between infected waterfowl and terrestrial poultry: Differences between the transmission and tropism of H5N8 highly pathogenic avian influenza virus (clade 2.3.4.4a) among ducks, chickens and turkeys. Virology, 2020, 541, 113-123.	2.4	25
6	Interspecies Transmission of Reassortant Swine Influenza A Virus Containing Genes from Swine Influenza A(H1N1)pdm09 and A(H1N2) Viruses. Emerging Infectious Diseases, 2020, 26, 273-281.	4.3	10
7	Head Start Immunity: Characterizing the Early Protection of C Strain Vaccine Against Subsequent Classical Swine Fever Virus Infection. Frontiers in Immunology, 2019, 10, 1584.	4.8	9
8	Statistical modelling of data showing pandemic H1N1 2009 swine influenza A virus infection kinetics in vaccinated pigs. Data in Brief, 2019, 27, 104576.	1.0	0
9	Vaccine-mediated protection of pigs against infection with pandemic H1N1 2009 swine influenza A virus requires a close antigenic match between the vaccine antigen and challenge virus. Vaccine, 2019, 37, 2288-2293.	3.8	14
10	Comparison of Heterosubtypic Protection in Ferrets and Pigs Induced by a Single-Cycle Influenza Vaccine. Journal of Immunology, 2018, 200, 4068-4077.	0.8	50
11	CD1â^' and CD1+ porcine blood dendritic cells are enriched for the orthologues of the two major mammalian conventional subsets. Scientific Reports, 2017, 7, 40942.	3.3	37
12	Distinct immune responses and virus shedding in pigs following aerosol, intra-nasal and contact infection with pandemic swine influenza A virus, A(H1N1)09. Veterinary Research, 2016, 47, 103.	3.0	30
13	Equine dendritic cells generated with horse serum have enhanced functionality in comparison to dendritic cells generated with fetal bovine serum. BMC Veterinary Research, 2016, 12, 254.	1.9	12
14	Aerosol Delivery of a Candidate Universal Influenza Vaccine Reduces Viral Load in Pigs Challenged with Pandemic H1N1 Virus. Journal of Immunology, 2016, 196, 5014-5023.	0.8	72
15	Factors affecting the infectivity of tissues from pigs with classical swine fever: Thermal inactivation rates and oral infectious dose. Veterinary Microbiology, 2015, 176, 1-9.	1.9	19
16	Differential detection of classical swine fever virus challenge strains in C-strain vaccinated pigs. BMC Veterinary Research, 2014, 10, 281.	1.9	8
17	Partial Activation of Natural Killer and γδT Cells by Classical Swine Fever Viruses Is Associated with Type I Interferon Elicited from Plasmacytoid Dendritic Cells. Vaccine Journal, 2014, 21, 1410-1420.	3.1	16
18	Comparison of two real-time RT-PCR assays for differentiation of C-strain vaccinated from classical swine fever infected pigs and wild boars. Research in Veterinary Science, 2014, 97, 455-457.	1.9	7

Helen E Everett

#	Article	IF	CITATIONS
19	Assessment of the Phenotype and Functionality of Porcine CD8 T Cell Responses following Vaccination with Live Attenuated Classical Swine Fever Virus (CSFV) and Virulent CSFV Challenge. Vaccine Journal, 2013, 20, 1604-1616.	3.1	56
20	Proteome-Wide Screening Reveals Immunodominance in the CD8 T Cell Response against Classical Swine Fever Virus with Antigen-Specificity Dependent on MHC Class I Haplotype Expression. PLoS ONE, 2013, 8, e84246.	2.5	28
21	Characterisation of vaccine-induced, broadly cross-reactive IFN-Î ³ secreting T cell responses that correlate with rapid protection against classical swine fever virus. Vaccine, 2012, 30, 2742-2748.	3.8	48
22	Challenge of Pigs with Classical Swine Fever Viruses after C-Strain Vaccination Reveals Remarkably Rapid Protection and Insights into Early Immunity. PLoS ONE, 2012, 7, e29310.	2.5	89
23	A generic real-time TaqMan assay for specific detection of lapinized Chinese vaccines against classical swine fever. Journal of Virological Methods, 2011, 175, 170-174.	2.1	22
24	Escape of classical swine fever C-strain vaccine virus from detection by C-strain specific real-time RT-PCR caused by a point mutation in the primer-binding site. Journal of Virological Methods, 2010, 166, 98-100.	2.1	22
25	Evaluation of a primer-probe energy transfer real-time PCR assay for detection of classical swine fever virus. Journal of Virological Methods, 2010, 168, 259-261.	2.1	15
26	Characterisation of experimental infections of domestic pigs with genotype 2.1 and 3.3 isolates of classical swine fever virus. Veterinary Microbiology, 2010, 142, 26-33.	1.9	41
27	Characterisation of virus-specific peripheral blood cell cytokine responses following vaccination or infection with classical swine fever viruses. Veterinary Microbiology, 2010, 142, 34-40.	1.9	26
28	The classical swine fever virus N-terminal protease Npro binds to cellular HAX-1. Journal of General Virology, 2010, 91, 2677-2686.	2.9	27
29	Classical swine fever virus infection protects aortic endothelial cells from pIpC-mediated apoptosis. Journal of General Virology, 2010, 91, 1038-1046.	2.9	34
30	Inflammasome Components NALP 1 and 3 Show Distinct but Separate Expression Profiles in Human Tissues Suggesting a Site-specific Role in the Inflammatory Response. Journal of Histochemistry and Cytochemistry, 2007, 55, 443-452.	2.5	438
31	The TRAF3-binding site of human molluscipox virus FLIP molecule MC159 is critical for its capacity to inhibit Fas-induced apoptosis. Cell Death and Differentiation, 2006, 13, 1577-1585.	11.2	33
32	Intracellular Trafficking of Interleukin-1 Receptor I Requires Tollip. Current Biology, 2006, 16, 2265-2270.	3.9	120
33	Myxoma Virus M11L Prevents Apoptosis through Constitutive Interaction with Bak. Journal of Virology, 2004, 78, 7097-7111.	3.4	78
34	POXVIRUSES ANDIMMUNEEVASION. Annual Review of Immunology, 2003, 21, 377-423.	21.8	582
35	The Myxoma Poxvirus Protein, M11L, Prevents Apoptosis by Direct Interaction with the Mitochondrial Permeability Transition Pore. Journal of Experimental Medicine, 2002, 196, 1127-1140.	8.5	97
36	Poxviruses and apoptosis: a time to die. Current Opinion in Microbiology, 2002, 5, 395-402.	5.1	57

Helen E Everett

#	Article	IF	CITATIONS
37	Viral proteins and the mitochondrial apoptotic checkpoint. Cytokine and Growth Factor Reviews, 2001, 12, 181-188.	7.2	17
38	Viruses and Apoptosis: Meddling with Mitochondria. Virology, 2001, 288, 1-7.	2.4	92
39	M11l. Journal of Experimental Medicine, 2000, 191, 1487-1498.	8.5	126
40	Immunomodulation by viruses: the myxoma virus story. Immunological Reviews, 1999, 168, 103-120.	6.0	123
41	Use of Chemokine Receptors by Poxviruses. Science, 1999, 286, 1968-1971.	12.6	141
42	Apoptosis: an innate immune response to virus infection. Trends in Microbiology, 1999, 7, 160-165.	7.7	359
43	Virus-encoded receptors for cytokines and chemokines. Seminars in Cell and Developmental Biology, 1998, 9, 359-368.	5.0	67
44	Interruption of cytokine networks by poxviruses: lessons from myxoma virus. Journal of Leukocyte Biology, 1995, 57, 731-738.	3.3	87