
Simone Dell'Acqua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2984627/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dopamine, Oxidative Stress and Protein–Quinone Modifications in Parkinson's and Other Neurodegenerative Diseases. Angewandte Chemie - International Edition, 2019, 58, 6512-6527.	13.8	160
2	Nitrous oxide reductase. Coordination Chemistry Reviews, 2013, 257, 332-349.	18.8	151
3	Copper(I)-α-Synuclein Interaction: Structural Description of Two Independent and Competing Metal Binding Sites. Inorganic Chemistry, 2013, 52, 1358-1367.	4.0	58
4	Determination of the Active Form of the Tetranuclear Copper Sulfur Cluster in Nitrous Oxide Reductase. Journal of the American Chemical Society, 2014, 136, 614-617.	13.7	52
5	Coordination and redox properties of copper interaction with α-synuclein. Journal of Inorganic Biochemistry, 2016, 163, 292-300.	3.5	43
6	Electron Transfer Complex between Nitrous Oxide Reductase and Cytochrome <i>c</i> ₅₅₂ from <i>Pseudomonas nautica</i> : Kinetic, Nuclear Magnetic Resonance, and Docking Studies. Biochemistry, 2008, 47, 10852-10862.	2.5	42
7	Reactivity of copper–α-synuclein peptide complexes relevant to Parkinson's disease. Metallomics, 2015, 7, 1091-1102.	2.4	39
8	Copper(I/II), α/β‣ynuclein and Amyloidâ€Î²: Menage à Trois?. ChemBioChem, 2015, 16, 2319-2328.	2.6	38
9	Classics in Chemical Neuroscience: Donepezil. ACS Chemical Neuroscience, 2019, 10, 155-167.	3.5	37
10	Remote His50 Acts as a Coordination Switch in the High-Affinity N-Terminal Centered Copper(II) Site of α-Synuclein. Inorganic Chemistry, 2015, 54, 4744-4751.	4.0	35
11	The tetranuclear copper active site of nitrous oxide reductase: the CuZ center. Journal of Biological Inorganic Chemistry, 2011, 16, 183-194.	2.6	34
12	Spectroscopic Definition of the Cu _Z ° Intermediate in Turnover of Nitrous Oxide Reductase and Molecular Insight into the Catalytic Mechanism. Journal of the American Chemical Society, 2017, 139, 4462-4476.	13.7	33
13	Binding and Reactivity of Copper to R ₁ and R ₃ Fragments of tau Protein. Inorganic Chemistry, 2020, 59, 274-286.	4.0	33
14	Differences in the Binding of Copper(I) to \hat{I}_{\pm} - and \hat{I}^2 -Synuclein. Inorganic Chemistry, 2015, 54, 265-272.	4.0	32
15	A new CuZ active form in the catalytic reduction of N2O by nitrous oxide reductase from Pseudomonas nautica. Journal of Biological Inorganic Chemistry, 2010, 15, 967-976.	2.6	26
16	The electron transfer complex between nitrous oxide reductase and its electron donors. Journal of Biological Inorganic Chemistry, 2011, 16, 1241-1254.	2.6	26
17	Biochemical characterization of the purple form of <i>Marinobacter hydrocarbonoclasticus</i> nitrous oxide reductase. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1204-1212.	4.0	25
18	Protonation state of the Cu ₄ S ₂ Cu _Z site in nitrous oxide reductase: redox dependence and insight into reactivity. Chemical Science, 2015, 6, 5670-5679.	7.4	23

SIMONE DELL'ACQUA

#	Article	IF	CITATIONS
19	Copper(I) Forms a Redox-Stable 1:2 Complex with α-Synuclein N-Terminal Peptide in a Membrane-Like Environment. Inorganic Chemistry, 2016, 55, 6100-6106.	4.0	23
20	Copperâ€Aβ Peptides and Oxidation of Catecholic Substrates: Reactivity and Endogenous Peptide Damage. Chemistry - A European Journal, 2016, 22, 16964-16973.	3.3	18
21	Metallotexaphyrins as MRI-Active Catalytic Antioxidants for Neurodegenerative Disease: A Study on Alzheimer's Disease. CheM, 2020, 6, 703-724.	11.7	17
22	Prion Peptides Are Extremely Sensitive to Copper Induced Oxidative Stress. Inorganic Chemistry, 2017, 56, 11317-11325.	4.0	15
23	Membrane Binding Strongly Affecting the Dopamine Reactivity Induced by Copper Prion and Copper/Amyloid-β (Aβ) Peptides. A Ternary Copper/Aβ/Prion Peptide Complex Stabilized and Solubilized in Sodium Dodecyl Sulfate Micelles. Inorganic Chemistry, 2020, 59, 900-912.	4.0	14
24	Synthesis, Characterization, and Stereoselective Oxidations of the Dinuclear Copper(II) Complex Derived from a Chiral Diamino-m-xylenetetra(benzimidazole) Ligand. European Journal of Inorganic Chemistry, 2015, 2015, 3493-3500.	2.0	11
25	Predicting Protein-Protein Interactions Using BiGGER: Case Studies. Molecules, 2016, 21, 1037.	3.8	9
26	Dinuclear heme and non-heme metal complexes as bioinspired catalysts for oxidation reactions. New Journal of Chemistry, 2014, 38, 518-528.	2.8	7
27	Dopamin, oxidativer Stress und Proteinâ€Chinonmodifikationen bei Parkinson und anderen neurodegenerativen Erkrankungen. Angewandte Chemie, 2019, 131, 6580-6596.	2.0	7
28	Interaction between Hemin and Prion Peptides: Binding, Oxidative Reactivity and Aggregation. International Journal of Molecular Sciences, 2020, 21, 7553.	4.1	7
29	A Cu-bis(imidazole) Substrate Intermediate Is the Catalytically Competent Center for Catechol Oxidase Activity of Copper Amyloid-β. Inorganic Chemistry, 2021, 60, 606-613.	4.0	6
30	Condition-Dependent Coordination and Peroxidase Activity of Hemin-AÎ ² Complexes. Molecules, 2020, 25, 5044.	3.8	5
31	Oxidase Reactivity of Cull Bound to N-Truncated AÎ ² Peptides Promoted by Dopamine. International Journal of Molecular Sciences, 2021, 22, 5190.	4.1	3
32	Aminomethylene-Phosphonate Analogue as a Cu(II) Chelator: Characterization and Application as an Inhibitor of Oxidation Induced by the Cu(II)–Prion Peptide Complex. Inorganic Chemistry, 2019, 58, 8995-9003.	4.0	1
33	Interactions of metal ions with $\hat{l}\pm$ synuclein and amyloid \hat{l}^2 peptides. , 2014, , .		Ο