
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2983598/publications.pdf Version: 2024-02-01

DEKKA DELLO

#	Article	IF	CITATIONS
1	Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy and Environmental Science, 2018, 11, 2306-2309.	30.8	341
2	Charging and discharging at the nanoscale: Fermi level equilibration of metallic nanoparticles. Chemical Science, 2015, 6, 2705-2720.	7.4	173
3	Biomimetic Oxygen Reduction by Cofacial Porphyrins at a Liquid–Liquid Interface. Journal of the American Chemical Society, 2012, 134, 5974-5984.	13.7	118
4	Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems. Chemical Communications, 2012, 48, 6484.	4.1	113
5	Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics. Chemical Reviews, 2018, 118, 3722-3751.	47.7	113
6	Mesoporous Single-Atom-Doped Graphene–Carbon Nanotube Hybrid: Synthesis and Tunable Electrocatalytic Activity for Oxygen Evolution and Reduction Reactions. ACS Catalysis, 2020, 10, 4647-4658.	11.2	100
7	Interfacial Redox Catalysis on Gold Nanofilms at Soft Interfaces. ACS Nano, 2015, 9, 6565-6575.	14.6	74
8	Electrochemical Dynamics of a Single Platinum Nanoparticle Collision Event for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2018, 57, 3464-3468.	13.8	68
9	Contact Potentials, Fermi Level Equilibration, and Surface Charging. Langmuir, 2016, 32, 5765-5775.	3.5	63
10	Redox Solid Energy Boosters for Flow Batteries: Polyaniline as a Case Study. Electrochimica Acta, 2017, 235, 664-671.	5.2	60
11	Towards a thermally regenerative all-copper redox flow battery. Physical Chemistry Chemical Physics, 2014, 16, 2831.	2.8	52
12	Thermally regenerative copper nanoslurry flow batteries for heat-to-power conversion with low-grade thermal energy. Energy and Environmental Science, 2020, 13, 2191-2199.	30.8	51
13	Gold Nanofilm Redox Catalysis for Oxygen Reduction at Soft Interfaces. Electrochimica Acta, 2016, 197, 362-373.	5.2	49
14	Charge distribution and Fermi level in bimetallic nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 2924-2931.	2.8	47
15	Redox Electrocatalysis of Floating Nanoparticles: Determining Electrocatalytic Properties without the Influence of Solid Supports. Journal of Physical Chemistry Letters, 2017, 8, 3564-3575.	4.6	46
16	All-vanadium dual circuit redox flow battery for renewable hydrogen generation and desulfurisation. Green Chemistry, 2016, 18, 1785-1797.	9.0	40
17	Oxygen reduction at a water-1,2-dichlorobenzene interface catalyzed by cobalt tetraphenyl porphyrine – A fuel cell approach. International Journal of Hydrogen Energy, 2011, 36, 10033-10043.	7.1	37
18	Electrochemical Dynamics of a Single Platinum Nanoparticle Collision Event for the Hydrogen Evolution Reaction. Angewandte Chemie, 2018, 130, 3522-3526.	2.0	37

#	Article	IF	CITATIONS
19	Vanadium–Manganese Redox Flow Battery: Study of Mn ^{III} Disproportionation in the Presence of Other Metallic Ions. Chemistry - A European Journal, 2020, 26, 7250-7257.	3.3	36
20	Self-healing gold mirrors and filters at liquid–liquid interfaces. Nanoscale, 2016, 8, 7723-7737.	5.6	35
21	Single Organic Droplet Collision Voltammogram via Electron Transfer Coupled Ion Transfer. Analytical Chemistry, 2017, 89, 9284-9291.	6.5	32
22	Decamethylruthenocene Hydride and Hydrogen Formation at Liquid Liquid Interfaces. Journal of Physical Chemistry C, 2015, 119, 25761-25769.	3.1	31
23	Solid electrochemical energy storage for aqueous redox flow batteries: The case of copper hexacyanoferrate. Electrochimica Acta, 2019, 321, 134704.	5.2	30
24	Electrochemical oxygen reduction at soft interfaces catalyzed by the transfer of hydrated lithium cations. Journal of Electroanalytical Chemistry, 2014, 731, 28-35.	3.8	27
25	High energy density MnO ₄ ^{â^'} /MnO ₄ ^{2â^'} redox couple for alkaline redox flow batteries. Chemical Communications, 2016, 52, 14039-14042.	4.1	26
26	Oxygen and hydrogen peroxide reduction by 1,2-diferrocenylethane at a liquid/liquid interface. Journal of Electroanalytical Chemistry, 2012, 681, 16-23.	3.8	24
27	Heterogeneous versus homogeneous electron transfer reactions at liquid–liquid interfaces: The wrong question?. Journal of Electroanalytical Chemistry, 2016, 779, 187-198.	3.8	24
28	Photoproduction of Hydrogen by Decamethylruthenocene Combined with Electrochemical Recycling. Angewandte Chemie - International Edition, 2017, 56, 2324-2327.	13.8	24
29	Variation of the Fermi level and the electrostatic force of a metallic nanoparticle upon colliding with an electrode. Chemical Science, 2017, 8, 4795-4803.	7.4	24
30	Closed bipolar electrochemistry in a four-electrode configuration. Physical Chemistry Chemical Physics, 2019, 21, 9627-9640.	2.8	24
31	Surprising acidity of hydrated lithium cations in organic solvents. Chemical Communications, 2014, 50, 5554-5557.	4.1	23
32	Mechanism of oxygen reduction by metallocenes near liquid liquid interfaces. Journal of Electroanalytical Chemistry, 2014, 729, 43-52.	3.8	23
33	Structure and reactivity of the polarised liquid–liquid interface: what we know and what we do not. Current Opinion in Electrochemistry, 2020, 19, 137-143.	4.8	23
34	Membraneless energy conversion and storage using immiscible electrolyte solutions. Current Opinion in Electrochemistry, 2020, 21, 100-108.	4.8	22
35	lonosomes: Observation of Ionic Bilayer Water Clusters. Journal of the American Chemical Society, 2021, 143, 7671-7680.	13.7	22
36	Redox Flow Batteries, Hydrogen and Distributed Storage. Chimia, 2015, 69, 753.	0.6	21

#	Article	IF	CITATIONS
37	Electrochemically Controlled Protonâ€Transferâ€Catalyzed Reactions at Liquid–Liquid Interfaces: Nucleophilic Substitution on Ferrocene Methanol. ChemPhysChem, 2013, 14, 311-314.	2.1	20
38	lon transfer battery: storing energy by transferring ions across liquid–liquid interfaces. Chemical Communications, 2016, 52, 9761-9764.	4.1	20
39	Kinetic differentiation of bulk/interfacial oxygen reduction mechanisms at/near liquid/liquid interfaces using scanning electrochemical microscopy. Journal of Electroanalytical Chemistry, 2014, 732, 101-109.	3.8	18
40	Self-assembly and redox induced phase transfer of gold nanoparticles at a water–propylene carbonate interface. Chemical Communications, 2017, 53, 4108-4111.	4.1	17
41	Electrovariable gold nanoparticle films at liquid–liquid interfaces: from redox electrocatalysis to Marangoni-shutters. Faraday Discussions, 2017, 199, 565-583.	3.2	16
42	Understanding Digestive Ripening of Ligand-Stabilized, Charged Metal Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 13405-13411.	3.1	15
43	Parylene C coated microelectrodes for scanning electrochemical microscopy. Electrochimica Acta, 2013, 110, 22-29.	5.2	14
44	Photo-Ionic Cells: Two Solutions to Store Solar Energy and Generate Electricity on Demand. Journal of Physical Chemistry C, 2014, 118, 16872-16883.	3.1	13
45	Semi-analytical modelling of linear scan voltammetric responses for soluble-insoluble system: The case of metal deposition. Journal of Electroanalytical Chemistry, 2018, 818, 35-43.	3.8	13
46	Thermodynamics, Charge Transfer and Practical Considerations of Solid Boosters in Redox Flow Batteries. Molecules, 2021, 26, 2111.	3.8	13
47	Chaotropic Agents Boosting the Performance of Photoionic Cells. Journal of Physical Chemistry C, 2015, 119, 4728-4735.	3.1	12
48	Mediated water electrolysis in biphasic systems. Physical Chemistry Chemical Physics, 2017, 19, 22700-22710.	2.8	10
49	Simulations employing finite element method at liquid liquid interfaces. Current Opinion in Electrochemistry, 2018, 7, 200-207.	4.8	10
50	Methanol, Ethanol and Iso-Propanol Performance in Alkaline Direct Alcohol Fuel Cell (ADAFC). ECS Transactions, 2010, 33, 1701-1714.	0.5	9
51	Mechanistic Study on the Photogeneration of Hydrogen by Decamethylruthenocene. Chemistry - A European Journal, 2019, 25, 12769-12779.	3.3	9
52	Effect of Chaotropes on the Transfer of Ions and Dyes across the Liquid–Liquid Interface. Journal of Physical Chemistry C, 2018, 122, 18510-18519.	3.1	8
53	Gold Raspberry-Like Colloidosomes Prepared at the Water–Nitromethane Interface. Langmuir, 2018, 34, 2758-2763.	3.5	7
54	Enhanced Reactivity of Water Clusters towards Oxidation in Water/Acetonitrile Mixtures. ChemElectroChem, 2016, 3, 2003-2007.	3.4	6

#	Article	IF	CITATIONS
55	Photoproduction of Hydrogen by Decamethylruthenocene Combined with Electrochemical Recycling. Angewandte Chemie, 2017, 129, 2364-2367.	2.0	6
56	Solvent effect in photo-ionic cells. Journal of Electroanalytical Chemistry, 2018, 816, 242-252.	3.8	6
57	Recent trends in thermoelectrochemical cells and thermally regenerative batteries. Current Opinion in Electrochemistry, 2021, 30, 100853.	4.8	6
58	Oxygen Absorption in Electrocatalyst Layers Detected by Scanning Electrochemical Microscopy. ChemElectroChem, 2021, 8, 2950-2955.	3.4	1
59	Electrocatalyst nanoparticles go with the flow. Nature Catalysis, 2021, 4, 445-446.	34.4	0
60	Redox Flow Batteries for Fast EV Charging and for Hydrogen Production for FCEVs. ECS Meeting Abstracts, 2018, , .	0.0	0
61	Energy Storage and Heat to Power Conversion and with Non-Aqueous All Copper Redox Flow Batteries. ECS Meeting Abstracts, 2018, , .	0.0	Ο
62	Electron Transfer Reactions at Liquid-Liquid Interfaces. ECS Meeting Abstracts, 2018, , .	0.0	0
63	Suitability of Ethyl Cellulose As a Binder in Positive Electrode of Aqueous Battery. ECS Meeting Abstracts, 2021, MA2021-02, 59-59.	0.0	0
64	Organic Redox Flow Batteries: Insights from Experimental and Numerical Study. ECS Meeting Abstracts, 2022, MA2022-01, 2020-2020.	0.0	0