
Sitaraman Krishnan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2983399/publications.pdf Version: 2024-02-01

SITADAMAN ΚΡΙSΗΝΑΝ

#	Article	IF	CITATIONS
1	Asymmetric and Symmetric Redox Flow Batteries for Energy-Efficient, High-Recovery Water Desalination. Environmental Science & Technology, 2022, 56, 4477-4488.	10.0	19
2	Experimental Analysis and Modeling of Closed-Loop Redox Flow Desalination. Journal of the Electrochemical Society, 2022, 169, 063521.	2.9	2
3	Cover Image, Volume 138, Issue 21. Journal of Applied Polymer Science, 2021, 138, 50670.	2.6	1
4	Lithium coordination and diffusion coefficients of PEGylated ionic liquid and lithium salt blends: A molecular dynamics simulation study. Journal of Molecular Liquids, 2021, 331, 115694.	4.9	9
5	Microporous Graphite Composites of Tailorable Porosity, Surface Wettability, and Water Permeability for Fuel Cell Bipolar Plates. Industrial & Engineering Chemistry Research, 2021, 60, 10203-10216.	3.7	11
6	Continuous Solar Desalination of Brackish Water via a Monolithically Integrated Redox Flow Device. ACS ES&T Engineering, 2021, 1, 1678-1687.	7.6	16
7	Polyetheretherketone, hexagonal boron nitride, and tungsten carbide cobalt chromium composite coatings: Mechanical and tribological properties. Journal of Applied Polymer Science, 2021, 138, 50504.	2.6	3
8	The Use of an Iron-Based Redox Couple for Brackish Water Desalination. ECS Meeting Abstracts, 2021, MA2021-02, 771-771.	0.0	0
9	X-Ray Scattering Investigation of Carbon-Nanotube-Based Polymer Composites. , 2021, , 1-37.		1
10	Solar Desalination Using Dye-Sensitized Photoanode in a Redox Flow Desalination Cell. ECS Meeting Abstracts, 2020, MA2020-01, 2834-2834.	0.0	0
11	Design and Characterization of Porous Graphite Bipolar Plates for Water Management in PEM Fuel Cells. ECS Meeting Abstracts, 2020, MA2020-02, 2202-2202.	0.0	0
12	Controlled Release of Glucose from Orally Delivered Temperature- and pH-Responsive Polysaccharide Microparticle Dispersions. Industrial & Engineering Chemistry Research, 2019, 58, 21056-21069.	3.7	13
13	Molecular Simulations and Experimental Characterization of Fluorinated Nitrile Butadiene Elastomers with Low H ₂ S Permeability. Industrial & Engineering Chemistry Research, 2019, 58, 14823-14838.	3.7	10
14	Kinetics of nutrient change and color retention during lowâ€ŧemperature microwaveâ€assisted drying of bitter melon (Momordica charantia L.). Journal of Food Processing and Preservation, 2019, 43, e14279.	2.0	10
15	Enhanced elastomer toughness and fracture properties imparted by chemically reactive flat nanoparticles. Polymer Testing, 2019, 78, 105932.	4.8	9
16	Preface to the Mohamed El-Aasser Festschrift. Industrial & Engineering Chemistry Research, 2019, 58, 20859-20862.	3.7	0
17	The effects of initial crack length on fracture characterization of rubbers using the J-Integral approach. Polymer Testing, 2019, 73, 327-337.	4.8	18
18	Mapping electrospray modes and droplet size distributions for chitosan solutions in unentangled and entangled concentration regimes. Advanced Powder Technology, 2018, 29, 3007-3021.	4.1	16

Sitaraman Krishnan

#	Article	IF	CITATIONS
19	Radical Mediated Thiol-Ene Emulsion Polymerizations. Macromolecules, 2017, 50, 775-783.	4.8	26
20	Thermophysical and transport properties of blends of an ether-derivatized imidazolium ionic liquid and a Li+-based solvate ionic liquid. Journal of Materials Science, 2017, 52, 3719-3740.	3.7	10
21	Simulated Dilatometry and Static Deformation Prediction of Glass Transition and Mechanical Properties of Polyacetylene and Poly(<i>para</i> â€phenylene vinylene). Macromolecular Theory and Simulations, 2016, 25, 238-253.	1.4	16
22	Simultaneous electronic and ionic conduction in ionic liquid imbibed polyacetylene-like conjugated polymer films. RSC Advances, 2015, 5, 88425-88435.	3.6	13
23	Biofilm Formation on Medical Devices and Infection: Preventive Approaches. , 2015, , 93-108.		7
24	Inspection, Characterization and Classification of Defects for Improved CMP of III-V Materials. ECS Journal of Solid State Science and Technology, 2015, 4, P5073-P5077.	1.8	2
25	Elevated temperature nanoindentation characterization of poly(para-phenylene vinylene) conjugated polymer films. Polymer Testing, 2015, 41, 17-25.	4.8	18
26	Self-assembled polysaccharide nanostructures for controlled-release applications. Nanotechnology Reviews, 2014, 3, .	5.8	66
27	Glass transition, viscosity, and conductivity correlations in solutions of lithium salts in PEGylated imidazolium ionic liquids. Journal of Molecular Liquids, 2014, 198, 398-408.	4.9	11
28	Structure–property relationships in transport and thermodynamic properties of imidazolium bistriflamide ionic liquids for CO2 capture. Chemical Engineering Journal, 2014, 250, 377-389.	12.7	33
29	Nanomechanical properties of poly(para-phenylene vinylene) determined using quasi-static and dynamic nanoindentation. Polymer Testing, 2014, 37, 86-93.	4.8	25
30	Role of ionic strength in chemical mechanical polishing of silicon carbide using silica slurries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 445, 119-127.	4.7	57
31	Thermogravimetric study of the kinetics of formation of poly(para-phenylene vinylene) by thermal conversion of a sulfonium precursor. Polymer Testing, 2014, 37, 170-178.	4.8	8
32	Interfacial Characteristics of a PEGylated Imidazolium Bistriflamide Ionic Liquid Electrolyte at a Lithium Ion Battery Cathode of LiMn ₂ O ₄ . ACS Applied Materials & Interfaces, 2013, 5, 2075-2084.	8.0	14
33	Use of Multifunctional Carboxylic Acids and Hydrogen Peroxide To Improve Surface Quality and Minimize Phosphine Evolution During Chemical Mechanical Polishing of Indium Phosphide Surfaces. Industrial & Engineering Chemistry Research, 2013, 52, 10664-10672.	3.7	15
34	Fundamental Investigation of Chemical Mechanical Polishing of GaAs in Silica Dispersions: Material Removal and Arsenic Trihydride Formation Pathways. ECS Journal of Solid State Science and Technology, 2013, 2, P432-P439.	1.8	29
35	Polymer Microspheres Prepared by Water-Borne Thiol–Ene Suspension Photopolymerization. ACS Macro Letters, 2012, 1, 1134-1137.	4.8	42
36	Thermophysical Properties and Proton Transport Mechanisms of Trialkylammonium and 1-Alkyl-1H-imidazol-3-ium Protic Ionic Liquids. Industrial & Engineering Chemistry Research, 2012, 51, 14084-14098.	3.7	38

#	Article	IF	CITATIONS
37	Carboxybetaine, sulfobetaine, and cationic block copolymer coatings: A comparison of the surface properties and antibiofouling behavior. Journal of Applied Polymer Science, 2012, 124, 2154-2170.	2.6	65
38	New poly(dimethylsiloxane)/poly(perfluorooctylethyl acrylate) block copolymers: structure and order across multiple length scales in thin films. Journal of Materials Chemistry, 2011, 21, 15357.	6.7	33
39	Ionic liquids with fluorinated block-oligomer tails: Influence of self-assembly on transport properties. Journal of Materials Chemistry, 2011, 21, 19275.	6.7	30
40	Role of polycation adsorption in poly-Si, SiO2 and Si3N4 removal during chemical mechanical polishing: Effect of polishing pad surface chemistry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 388, 21-28.	4.7	22
41	Protein adsorption resistance of anti-biofouling block copolymers containing amphiphilic side chains. Soft Matter, 2010, 6, 3237.	2.7	77
42	PEGylated Imidazolium Ionic Liquid Electrolytes: Thermophysical and Electrochemical Properties. Chemistry of Materials, 2010, 22, 6347-6360.	6.7	94
43	NEXAFS Depth Profiling of Surface Segregation in Block Copolymer Thin Films. Macromolecules, 2010, 43, 4733-4743.	4.8	45
44	Antimicrobial Behavior of Semifluorinated-Quaternized Triblock Copolymers against Airborne and Marine Microorganisms. ACS Applied Materials & Interfaces, 2010, 2, 703-711.	8.0	49
45	Surface engineering of styrene/PEGylatedâ€fluoroalkyl styrene block copolymer thin films. Journal of Polymer Science Part A, 2009, 47, 267-284.	2.3	52
46	ABC Triblock Surface Active Block Copolymer with Grafted Ethoxylated Fluoroalkyl Amphiphilic Side Chains for Marine Antifouling/Fouling-Release Applications. Langmuir, 2009, 25, 12266-12274.	3.5	141
47	Advances in polymers for anti-biofouling surfaces. Journal of Materials Chemistry, 2008, 18, 3405.	6.7	741
48	Settlement of <i>Ulva</i> Zoospores on Patterned Fluorinated and PEGylated Monolayer Surfaces. Langmuir, 2008, 24, 503-510.	3.5	121
49	Patterned Biofunctional Poly(acrylic acid) Brushes on Silicon Surfaces. Biomacromolecules, 2007, 8, 3082-3092.	5.4	140
50	Surface Induced Tilt Propagation in Thin Films of Semifluorinated Liquid Crystalline Side Chain Block Copolymers. Macromolecules, 2007, 40, 81-89.	4.8	43
51	Surface Organization, Light-Driven Surface Changes, and Stability of Semifluorinated Azobenzene Polymers. Langmuir, 2007, 23, 5110-5119.	3.5	55
52	Surfaces of Fluorinated Pyridinium Block Copolymers with Enhanced Antibacterial Activity. Langmuir, 2006, 22, 11255-11266.	3.5	121
53	Probing the Ordering of Semiconducting Fluoreneâ^'Thiophene Copolymer Surfaces on Rubbed Polyimide Substrates by Near-Edge X-ray Absorption Fine Structure. Macromolecules, 2006, 39, 2225-2231.	4.8	66
54	Comparison of the Fouling Release Properties of Hydrophobic Fluorinated and Hydrophilic PEGylated Block Copolymer Surfaces:Â Attachment Strength of the DiatomNaviculaand the Green AlgaUlva. Biomacromolecules, 2006, 7, 1449-1462.	5.4	261

#	Article	IF	CITATIONS
55	Anti-Biofouling Properties of Comblike Block Copolymers with Amphiphilic Side Chains. Langmuir, 2006, 22, 5075-5086.	3.5	331
56	Ultracentrifugation Method to Measure Water-Soluble Monomer Incorporation in Latex. Colloid and Polymer Science, 2005, 283, 836-844.	2.1	3
57	Fluorinated polymers: liquid crystalline properties and applications in lithography. Chemical Record, 2004, 4, 315-330.	5.8	49
58	Effects of Agitation on Oxygen Inhibition, Particle Nucleation, Reaction Rates, and Molecular Weights in Emulsion Polymerization ofn-Butyl Methacrylate. Industrial & Engineering Chemistry Research, 2004, 43, 6331-6342.	3.7	10
59	Effect of Surfactant Concentration on Particle Nucleation in Emulsion Polymerization ofn-Butyl Methacrylate. Macromolecules, 2003, 36, 3152-3159.	4.8	30
60	Influence of Chain Transfer Agent on the Cross-Linking of Poly(n-butyl methacrylate-co-N-methylol) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 5

61	Relative Importance of the Effects of Seed and Feed Stage Agitations on Latex Properties in Semibatch Emulsion Copolymerization of nâ€Butyl Methacrylate and Nâ€Methylol Acrylamide. Polymer-Plastics Technology and Engineering, 2003, 11, 359-378.	0.7	8
62	Agitation Effects in Emulsion Copolymerization of nâ€Butyl Methacrylate and Nâ€Methylol Acrylamide. Polymer-Plastics Technology and Engineering, 2003, 11, 335-357.	0.7	11