Daniel H Slichter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2983048/publications.pdf Version: 2024-02-01

DANIEL H SUICHTED

#	Article	IF	CITATIONS
1	Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback. Nature, 2012, 490, 77-80.	27.8	377
2	Observation of Quantum Jumps in a Superconducting Artificial Atom. Physical Review Letters, 2011, 106, 110502.	7.8	293
3	Dispersive magnetometry with a quantum limited SQUID parametric amplifier. Physical Review B, 2011, 83, .	3.2	217
4	Heralded State Preparation in a Superconducting Qubit. Physical Review Letters, 2012, 109, 050506.	7.8	113
5	Quantum amplification of mechanical oscillator motion. Science, 2019, 364, 1163-1165.	12.6	103
6	Measurement-Induced Qubit State Mixing in Circuit QED from Up-Converted Dephasing Noise. Physical Review Letters, 2012, 109, 153601.	7.8	88
7	High-fidelity laser-free universal control of trapped ion qubits. Nature, 2021, 597, 209-213.	27.8	85
8	Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10μT to 1.5T. Journal of Magnetic Resonance, 2007, 186, 182-192.	2.1	68
9	Microwaves in Quantum Computing. IEEE Journal of Microwaves, 2021, 1, 403-427.	6.5	59
10	Approaching ideal weak link behavior with three dimensional aluminum nanobridges. Applied Physics Letters, 2010, 96, .	3.3	56
11	Single-mode optical fiber for high-power, low-loss UV transmission. Optics Express, 2014, 22, 19783.	3.4	52
12	State Readout of a Trapped Ion Qubit Using a Trap-Integrated Superconducting Photon Detector. Physical Review Letters, 2021, 126, 010501.	7.8	52
13	Single crystal silicon capacitors with low microwave loss in the single photon regime. Applied Physics Letters, 2011, 98, .	3.3	41
14	Quantum Zeno effect in the strong measurement regime of circuit quantum electrodynamics. New Journal of Physics, 2016, 18, 053031.	2.9	40
15	UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap. Optics Express, 2017, 25, 8705.	3.4	40
16	Quantum amplification of boson-mediated interactions. Nature Physics, 2021, 17, 898-902.	16.7	39
17	Trapped-Ion Spin-Motion Coupling with Microwaves and a Near-Motional Oscillating Magnetic Field Gradient. Physical Review Letters, 2019, 122, 163201.	7.8	36
18	Evidence for multiple mechanisms underlying surface electric-field noise in ion traps. Physical Review A, 2018, 98, .	2.5	31

DANIEL H SLICHTER

#	Article	IF	CITATIONS
19	Versatile laser-free trapped-ion entangling gates. New Journal of Physics, 2019, 21, 033033.	2.9	31
20	Millikelvin thermal and electrical performance of lossy transmission line filters. Applied Physics Letters, 2009, 94, .	3.3	28
21	VECSEL systems for the generation and manipulation of trapped magnesium ions. Optica, 2016, 3, 1294.	9.3	22
22	Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence. Physical Review A, 2020, 101, .	2.5	18
23	Dispersive readout of a flux qubit at the single-photon level. Physical Review B, 2011, 84, .	3.2	15
24	Resource-Efficient Dissipative Entanglement of Two Trapped-Ion Qubits. Physical Review Letters, 2022, 128, 080502.	7.8	13
25	ARTIQ and Sinara: Open Software and Hardware Stacks for Quantum Physics. , 2020, , .		10
26	High-Fidelity Indirect Readout of Trapped-Ion Hyperfine Qubits. Physical Review Letters, 2022, 128, 160503.	7.8	7
27	Motional Squeezing for Trapped Ion Transport and Separation. Physical Review Letters, 2021, 127, 083201.	7.8	6
28	Dispersive microwave readout for quantum electrical circuits. , 2011, , .		3
29	Measurement of electric-field noise from interchangeable samples with a trapped-ion sensor. Physical Review A, 2021, 104, .	2.5	2
30	Single-frequency 571nm VECSEL for photo-ionization of magnesium. , 2016, , .		1