Klaus H Kaestner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2983028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Offspring from trained male mice inherit improved muscle mitochondrial function through PPAR co-repressor modulation. Life Sciences, 2022, 291, 120239.	4.3	2
2	Heterogenous impairment of α cell function in type 2 diabetes is linked to cell maturation state. Cell Metabolism, 2022, 34, 256-268.e5.	16.2	39
3	Single-cell multi-omics analysis of human pancreatic islets reveals novel cellular states in type 1 diabetes. Nature Metabolism, 2022, 4, 284-299.	11.9	52
4	Development of a Beta Cell-Specific Expression Control Element for Recombinant Adeno-Associated Virus. Human Gene Therapy, 2022, 33, 789-800.	2.7	2
5	Paternal Exercise Improves the Metabolic Health of Offspring via Epigenetic Modulation of the Germline. International Journal of Molecular Sciences, 2022, 23, 1.	4.1	53
6	β-Hydroxybutyrate suppresses colorectal cancer. Nature, 2022, 605, 160-165.	27.8	120
7	Variant-to-gene-mapping analyses reveal a role for pancreatic islet cells in conferring genetic susceptibility to sleep-related traits. Sleep, 2022, 45, .	1.1	6
8	α Cell dysfunction in islets from nondiabetic, glutamic acid decarboxylase autoantibody–positive individuals. Journal of Clinical Investigation, 2022, 132, .	8.2	24
9	Insulin-degrading enzyme ablation in mouse pancreatic alpha cells triggers cell proliferation, hyperplasia and glucagon secretion dysregulation. Diabetologia, 2022, 65, 1375-1389.	6.3	3
10	A FoxL1-CreERT-2A-tdTomato Mouse Labels Subepithelial Telocytes. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1155-1158.e4.	4.5	5
11	Tumor-infiltrating mast cells are associated with resistance to anti-PD-1 therapy. Nature Communications, 2021, 12, 346.	12.8	107
12	Exome-wide evaluation of rare coding variants using electronic health records identifies new gene–phenotype associations. Nature Medicine, 2021, 27, 66-72.	30.7	44
13	Biphasic dynamics of beta cell mass in a mouse model of congenital hyperinsulinism: implications for type 2 diabetes. Diabetologia, 2021, 64, 1133-1143.	6.3	12
14	TCR+/BCR+ dual-expressing cells and their associated public BCR clonotype are not enriched in type 1 diabetes. Cell, 2021, 184, 827-839.e14.	28.9	16
15	FoxA-dependent demethylation of DNA initiates epigenetic memory of cellular identity. Developmental Cell, 2021, 56, 602-612.e4.	7.0	30
16	FoxL1+ mesenchymal cells are a critical source of Wnt5a for midgut elongation during mouse embryonic intestinal development. Cells and Development, 2021, 165, 203662.	1.5	3
17	Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets. Nature Communications, 2021, 12, 2277.	12.8	122
18	Highly multiplexed 2-dimensional imaging mass cytometry analysis of HBV-infected liver. JCI Insight, 2021, 6, .	5.0	15

#	Article	IF	CITATIONS
19	Cochlear supporting cells require GAS2 for cytoskeletal architecture and hearing. Developmental Cell, 2021, 56, 1526-1540.e7.	7.0	18
20	Genetic activation of α-cell glucokinase in mice causes enhanced glucose-suppression of glucagon secretion during normal and diabetic states. Molecular Metabolism, 2021, 49, 101193.	6.5	23
21	Highly Multiplexed Image Analysis of Intestinal Tissue Sections in Patients With Inflammatory Bowel Disease. Gastroenterology, 2021, 161, 1940-1952.	1.3	18
22	What is a β cell? – Chapter I in the Human Islet Research Network (HIRN) review series. Molecular Metabolism, 2021, 53, 101323.	6.5	20
23	Single-cell analysis of the human pancreas in type 2 diabetes using multi-spectral imaging mass cytometry. Cell Reports, 2021, 37, 109919.	6.4	33
24	Gq signaling in \hat{I}_{\pm} cells is critical for maintaining euglycemia. JCI Insight, 2021, 6, .	5.0	11
25	Cancer stem cells: advances in biology and clinical translation—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 142-163.	3.8	8
26	CMGH: The year in review. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1873-1874.	4.5	0
27	Hypermethylation of FOXA1 and allelic loss of PTEN drive squamous differentiation and promote heterogeneity in bladder cancer. Oncogene, 2020, 39, 1302-1317.	5.9	26
28	The Dynamic Chromatin Architecture of the Regenerating Liver. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 121-143.	4.5	37
29	Tracking Dysbiosis Where It Matters. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 547-548.	4.5	0
30	A High-Content Screen Identifies MicroRNAs That Regulate Liver Repopulation After Injury in Mice. Gastroenterology, 2020, 158, 1044-1057.e17.	1.3	8
31	SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2 Are Expressed in the Microvasculature and Ducts of Human Pancreas but Are Not Enriched in β Cells. Cell Metabolism, 2020, 32, 1028-1040.e4.	16.2	148
32	Single-cell transcriptomics of human islet ontogeny defines the molecular basis of β-cell dedifferentiation in T2D. Molecular Metabolism, 2020, 42, 101057.	6.5	63
33	Organisation of the human pancreas in health and in diabetes. Diabetologia, 2020, 63, 1966-1973.	6.3	62
34	Islet transplantation in the subcutaneous space achieves long-term euglycaemia in preclinical models of type 1 diabetes. Nature Metabolism, 2020, 2, 1013-1020.	11.9	64
35	HDAC3 ensures stepwise epidermal stratification via NCoR/SMRT-reliant mechanisms independent of its histone deacetylase activity. Genes and Development, 2020, 34, 973-988.	5.9	20
36	Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nature Genetics, 2020, 52, 680-691.	21.4	445

#	Article	IF	CITATIONS
37	A negative reciprocal regulatory axis between cyclin D1 and HNF4α modulates cell cycle progression and metabolism in the liver. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17177-17186.	7.1	34
38	Collapse of the hepatic gene regulatory network in the absence of FoxA factors. Genes and Development, 2020, 34, 1039-1050.	5.9	36
39	Genetic Variation in Type 1 Diabetes Reconfigures the 3D Chromatin Organization of T Cells and Alters Gene Expression. Immunity, 2020, 52, 257-274.e11.	14.3	42
40	Emerging diverse roles of telocytes. Development (Cambridge), 2019, 146, .	2.5	84
41	A New Era of CMGH. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 527.	4.5	1
42	A Network of microRNAs Acts to Promote Cell Cycle Exit and Differentiation of Human Pancreatic Endocrine Cells. IScience, 2019, 21, 681-694.	4.1	21
43	The dynamic methylome of islets in health and disease. Molecular Metabolism, 2019, 27, S25-S32.	6.5	16
44	The role of T cell miRNAs for regulatory T cell induction in islet autoimmunity. Molecular Metabolism, 2019, 27, S122-S128.	6.5	12
45	PRDM16 Maintains Homeostasis of the Intestinal Epithelium by Controlling Region-Specific Metabolism. Cell Stem Cell, 2019, 25, 830-845.e8.	11.1	62
46	Multiplexed In Situ Imaging Mass Cytometry Analysis of the Human Endocrine Pancreas and Immune System in Type 1 Diabetes. Cell Metabolism, 2019, 29, 769-783.e4.	16.2	151
47	NIH Initiative to Improve Understanding of the Pancreas, Islet, and Autoimmunity in Type 1 Diabetes: The Human Pancreas Analysis Program (HPAP). Diabetes, 2019, 68, 1394-1402.	0.6	69
48	The Intestinal Stem Cell Niche: A Central Role for Foxl1-Expressing Subepithelial Telocytes. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 111-117.	4.5	59
49	miRNA142-3p targets Tet2 and impairs Treg differentiation and stability in models of type 1 diabetes. Nature Communications, 2019, 10, 5697.	12.8	48
50	Single-Cell RNA-Seq of the Pancreatic Islets––a Promise Not yet Fulfilled?. Cell Metabolism, 2019, 29, 539-544.	16.2	98
51	Examining How the MAFB Transcription Factor Affects Islet β-Cell Function Postnatally. Diabetes, 2019, 68, 337-348.	0.6	36
52	Intraislet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight, 2019, 4, .	5.0	102
53	LXR agonism and Sorafenib treatment as novel combination therapy for hepatocellular carcinoma. FASEB Journal, 2019, 33, 126.9.	0.5	1
54	Genetic ablation of mammary ducts through foxa1 prevents breast cancer occurrence. American Journal of Cancer Research, 2019, 9, 424-428.	1.4	1

#	Article	IF	CITATIONS
55	Sleeve Gastrectomy Improves Glycemia Independent of Weight Loss by Restoring Hepatic Insulin Sensitivity. Diabetes, 2018, 67, 1079-1085.	0.6	42
56	Overexpression of ST5, an activator of Ras, has no effect on β-cell proliferation in adult mice. Molecular Metabolism, 2018, 11, 212-217.	6.5	3
57	A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes. Science Translational Medicine, 2018, 10, .	12.4	49
58	Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature, 2018, 557, 242-246.	27.8	394
59	Combinatorial genetics in liver repopulation and carcinogenesis with a in vivo CRISPR activation platformâ€. Hepatology, 2018, 68, 663-676.	7.3	63
60	Epigenetics and Epigenomics: Implications for Diabetes and Obesity. Diabetes, 2018, 67, 1923-1931.	0.6	116
61	Postnatal DNA demethylation and its role in tissue maturation. Nature Communications, 2018, 9, 2040.	12.8	56
62	The Dysregulation of the <i>DLK1MEG3</i> Locus in Islets From Patients With Type 2 Diabetes Is Mimicked by Targeted Epimutation of Its Promoter With TALE-DNMT Constructs. Diabetes, 2018, 67, 1807-1815.	0.6	40
63	Lipid malabsorption from altered hormonal signaling changes early gut microbial responses. American Journal of Physiology - Renal Physiology, 2018, 315, G580-G591.	3.4	6
64	GABA and Artesunate Do Not Induce Pancreatic α-to-β Cell Transdifferentiation InÂVivo. Cell Metabolism, 2018, 28, 787-792.e3.	16.2	85
65	Pax6 regulation of <i>Sox9</i> in the retinal pigmented epithelium controls its timely differentiation and choroid vasculature development. Development (Cambridge), 2018, 145, .	2.5	15
66	TRAP-seq identifies cystine/glutamate antiporter as a driver of recovery from liver injury. Journal of Clinical Investigation, 2018, 128, 2297-2309.	8.2	28
67	Targeted demethylation at the CDKN1C/p57 locus induces human Î ² cell replication. Journal of Clinical Investigation, 2018, 129, 209-214.	8.2	48
68	FoxA1 and FoxA2 drive gastric differentiation and suppress squamous identity in NKX2-1-negative lung cancer. ELife, 2018, 7, .	6.0	59
69	High-fidelity Glucagon-CreER mouse line generated by CRISPR-Cas9 assisted gene targeting. Molecular Metabolism, 2017, 6, 236-244.	6.5	40
70	Functional and Metabolomic Consequences of KATP Channel Inactivation in Human Islets. Diabetes, 2017, 66, 1901-1913.	0.6	35
71	WNT10A mutation causes ectodermal dysplasia by impairing progenitor cell proliferation and KLF4-mediated differentiation. Nature Communications, 2017, 8, 15397.	12.8	104
72	Virgin Beta Cells Persist throughout Life at a Neogenic Niche within Pancreatic Islets. Cell Metabolism, 2017, 25, 911-926.e6.	16.2	172

#	Article	IF	CITATIONS
73	Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature, 2017, 550, 402-406.	27.8	851
74	CREB coactivators CRTC2 and CRTC3 modulate bone marrow hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11739-11744.	7.1	15
75	PTP4A1 promotes TGFÎ ² signaling and fibrosis in systemic sclerosis. Nature Communications, 2017, 8, 1060.	12.8	46
76	β ells are not uniform after all—Novel insights into molecular heterogeneity of insulinâ€secreting cells. Diabetes, Obesity and Metabolism, 2017, 19, 147-152.	4.4	24
77	Insights From the Crypt: Regionalization, Adaptation, and Renewal of the Intestinal Epithelium. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 297-298.	4.5	0
78	Islet biology. Molecular Metabolism, 2017, 6, vi.	6.5	0
79	Transcriptional Noise and Somatic Mutations in the Aging Pancreas. Cell Metabolism, 2017, 26, 809-811.	16.2	11
80	Epigenetic Analysis of Endocrine Cell Subtypes from Human Pancreatic Islets. Methods in Molecular Biology, 2017, 1507, 95-111.	0.9	0
81	Epigenetic control of β-cell function and failure. Diabetes Research and Clinical Practice, 2017, 123, 24-36.	2.8	28
82	Epigenetics in formation, function, and failure of the endocrine pancreas. Molecular Metabolism, 2017, 6, 1066-1076.	6.5	32
83	Reprogramming human gallbladder cells into insulin-producing β-like cells. PLoS ONE, 2017, 12, e0181812.	2.5	35
84	PAX6 maintains β cell identity by repressing genes of alternative islet cell types. Journal of Clinical Investigation, 2016, 127, 230-243.	8.2	126
85	Genetic lineage tracing analysis of the cell of origin of hepatotoxinâ€induced liver tumors in mice. Hepatology, 2016, 64, 1163-1177.	7.3	65
86	Fox transcription factors: from development to disease. Development (Cambridge), 2016, 143, 4558-4570.	2.5	292
87	The Pioneer Transcription Factor FoxA Maintains an Accessible Nucleosome Configuration at Enhancers for Tissue-Specific Gene Activation. Molecular Cell, 2016, 62, 79-91.	9.7	315
88	The RNA Polymerase III Subunit Polr3b Is Required for the Maintenance of Small Intestinal Crypts in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 783-795.	4.5	10
89	Single-Cell Mass Cytometry Analysis of the Human Endocrine Pancreas. Cell Metabolism, 2016, 24, 616-626.	16.2	126
90	Epigenetic regulation of intestinal stem cells by Tet1-mediated DNA hydroxymethylation. Genes and Development, 2016, 30, 2433-2442.	5.9	46

#	Article	IF	CITATIONS
91	The next generation of target capture technologies - large DNA fragment enrichment and sequencing determines regional genomic variation of high complexity. BMC Genomics, 2016, 17, 486.	2.8	61
92	Human islets contain four distinct subtypes of \hat{I}^2 cells. Nature Communications, 2016, 7, 11756.	12.8	291
93	Foxa1 is essential for mammary duct formation. Genesis, 2016, 54, 277-285.	1.6	17
94	Single-Cell Transcriptomics of the Human Endocrine Pancreas. Diabetes, 2016, 65, 3028-3038.	0.6	346
95	Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Molecular Metabolism, 2016, 5, 233-244.	6.5	233
96	DNA Hypomethylation Contributes to Genomic Instability and Intestinal Cancer Initiation. Cancer Prevention Research, 2016, 9, 534-546.	1.5	97
97	Foxl1-Expressing Mesenchymal Cells Constitute the Intestinal Stem Cell Niche. Cellular and Molecular Gastroenterology and Hepatology, 2016, 2, 175-188.	4.5	216
98	LIM domain–binding 1 maintains the terminally differentiated state of pancreatic β cells. Journal of Clinical Investigation, 2016, 127, 215-229.	8.2	60
99	Pancreatic β cell identity requires continual repression of non–β cell programs. Journal of Clinical Investigation, 2016, 127, 244-259.	8.2	104
100	The â€~de novo' DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium. ELife, 2016, 5, .	6.0	53
101	The BisPCR2 method for targeted bisulfite sequencing. Epigenetics and Chromatin, 2015, 8, 27.	3.9	40
102	The CREB/CRTC2 pathway modulates autoimmune disease by promoting Th17 differentiation. Nature Communications, 2015, 6, 7216.	12.8	42
103	Dnmt1 is essential to maintain progenitors in the perinatal intestinal epithelium. Development (Cambridge), 2015, 142, 2163-2172.	2.5	60
104	CREB pathway links PGE2 signaling with macrophage polarization. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15642-15647.	7.1	225
105	Serine 133 phosphorylation is not required for hippocampal CREB-mediated transcription and behavior. Learning and Memory, 2015, 22, 109-115.	1.3	35
106	Spontaneous Pancreatitis Caused by Tissue-Specific Gene Ablation of Hhex in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 550-569.	4.5	11
107	Epigenetic regulation of the intestinal epithelium. Cellular and Molecular Life Sciences, 2015, 72, 4139-4156.	5.4	35
108	Loss of FOXA1 Drives Sexually Dimorphic Changes in Urothelial Differentiation and Is an Independent Predictor of Poor Prognosis in Bladder Cancer. American Journal of Pathology, 2015, 185, 1385-1395.	3.8	60

#	Article	IF	CITATIONS
109	A genetic screen reveals Foxa3 and TNFR1 as key regulators of liver repopulation. Genes and Development, 2015, 29, 904-909.	5.9	37
110	An Epigenomic Road Map for Endoderm Development. Cell Stem Cell, 2015, 16, 343-344.	11.1	7
111	Protein tyrosine phosphatase of liver regeneration-1 is required for normal timing of cell cycle progression during liver regeneration. American Journal of Physiology - Renal Physiology, 2015, 308, G85-C91.	3.4	15
112	Aging-Dependent Demethylation of Regulatory Elements Correlates with Chromatin State and Improved β Cell Function. Cell Metabolism, 2015, 22, 619-632.	16.2	172
113	Ablation of Foxl1-Cre–Labeled Hepatic Progenitor Cells and Their Descendants Impairs Recovery of Mice From Liver Injury. Gastroenterology, 2015, 148, 192-202.e3.	1.3	67
114	TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. Journal of Clinical Investigation, 2015, 125, 1998-2006.	8.2	109
115	The Missing Inc(RNA) between the pancreatic β-cell and diabetes. Frontiers in Genetics, 2014, 5, 200.	2.3	44
116	Activated FoxM1 Attenuates Streptozotocin-Mediated β-Cell Death. Molecular Endocrinology, 2014, 28, 1435-1447.	3.7	20
117	The diabetes gene <i>Hhex</i> maintains δ-cell differentiation and islet function. Genes and Development, 2014, 28, 829-834.	5.9	114
118	A cistrome roadmap for understanding pancreatic islet biology. Nature Genetics, 2014, 46, 95-96.	21.4	0
119	Two novel type 2 diabetes loci revealed through integration of TCF7L2 DNA occupancy and SNP association data. BMJ Open Diabetes Research and Care, 2014, 2, e000052.	2.8	17
120	Betatrophin—Promises Fading and Lessons Learned. Cell Metabolism, 2014, 20, 932-933.	16.2	17
121	Impaired enteroendocrine development in intestinal-specific <i>Islet1</i> mouse mutants causes impaired glucose homeostasis. American Journal of Physiology - Renal Physiology, 2014, 307, G979-G991.	3.4	25
122	Metabolic memory of ß-cells controls insulin secretion and is mediated by CaMKIIa. Molecular Metabolism, 2014, 3, 484-489.	6.5	21
123	Transcriptional and epigenetic regulation in human islets. Diabetologia, 2014, 57, 451-454.	6.3	12
124	DNA methylation is required for the control of stem cell differentiation in the small intestine. Genes and Development, 2014, 28, 652-664.	5.9	159
125	Epigenetic Regulation of the DLK1-MEG3 MicroRNA Cluster in Human Type 2 Diabetic Islets. Cell Metabolism, 2014, 19, 135-145.	16.2	304
126	The Origin, Biology, and Therapeutic Potential of Facultative Adult Hepatic Progenitor Cells. Current Topics in Developmental Biology, 2014, 107, 269-292.	2.2	33

#	Article	IF	CITATIONS
127	FOXA1 deletion in luminal epithelium causes prostatic hyperplasia and alteration of differentiated phenotype. Laboratory Investigation, 2014, 94, 726-739.	3.7	39
128	CREB mediates the insulinotropic and anti-apoptotic effects of GLP-1 signaling in adult mouse β-cells. Molecular Metabolism, 2014, 3, 803-812.	6.5	48
129	Islet-1 Is Essential for Pancreatic \hat{I}^2 -Cell Function. Diabetes, 2014, 63, 4206-4217.	0.6	67
130	The organoid-initiating cells in mouse pancreas and liver are phenotypically and functionally similar. Stem Cell Research, 2014, 13, 275-283.	0.7	71
131	5-hydroxymethylcytosine represses the activity of enhancers in embryonic stem cells: a new epigenetic signature for gene regulation. BMC Genomics, 2014, 15, 670.	2.8	30
132	The transcription factor CREB has no non-redundant functions in hepatic glucose metabolism in mice. Diabetologia, 2014, 57, 1242-8.	6.3	22
133	Apoptosis rate and transcriptional response of pancreatic islets exposed to the PPAR gamma agonist Pioglitazone. Diabetology and Metabolic Syndrome, 2013, 5, 1.	2.7	33
134	Dynamic recruitment of microRNAs to their mRNA targets in the regenerating liver. BMC Genomics, 2013, 14, 264.	2.8	59
135	CISH has no non-redundant functions in glucose homeostasis or beta cell proliferation during pregnancy in mice. Diabetologia, 2013, 56, 2435-2445.	6.3	14
136	Epigenomic plasticity enables human pancreatic α to β cell reprogramming. Journal of Clinical Investigation, 2013, 123, 1275-1284.	8.2	365
137	Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal–Hreidarsson syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3408-16.	7.1	127
138	Genome-Wide Location Analysis Reveals Distinct Transcriptional Circuitry by Paralogous Regulators Foxa1 and Foxa2. PLoS Genetics, 2012, 8, e1002770.	3.5	45
139	Foxa2 and H2A.Z Mediate Nucleosome Depletion during Embryonic Stem Cell Differentiation. Cell, 2012, 151, 1608-1616.	28.9	181
140	Following the Cycle: Finally, a Transgenic Mouse to Sort Live Replicating Cells. Developmental Cell, 2012, 23, 676-677.	7.0	0
141	Epigenetic regulation of pancreas development and function. Seminars in Cell and Developmental Biology, 2012, 23, 693-700.	5.0	31
142	Foxa1 and Foxa2 Are Essential for Sexual Dimorphism in Liver Cancer. Cell, 2012, 148, 72-83.	28.9	329
143	Organogenesis and functional genomics of the endocrine pancreas. Cellular and Molecular Life Sciences, 2012, 69, 2109-2123.	5.4	10
144	Control of Pancreatic β Cell Regeneration by Glucose Metabolism. Cell Metabolism, 2011, 13, 440-449.	16.2	266

#	Article	IF	CITATIONS
145	The nucleosome map of the mammalian liver. Nature Structural and Molecular Biology, 2011, 18, 742-746.	8.2	73
146	On the origin of the liver. Journal of Clinical Investigation, 2011, 121, 4630-4633.	8.2	17
147	Making the liver what it is: The many targets of the transcriptional regulator HNF4α. Hepatology, 2010, 51, 376-377.	7.3	16
148	Foxa1 and Foxa2 Maintain the Metabolic and Secretory Features of the Mature β-Cell. Molecular Endocrinology, 2010, 24, 1594-1604.	3.7	105
149	FoxOs Function Synergistically to Promote Glucose Production. Journal of Biological Chemistry, 2010, 285, 35245-35248.	3.4	154
150	Converting intestine into esophagus: Anterior-posterior patterning of the vertebrate gut requires Cdx2. Cell Cycle, 2010, 9, 634-635.	2.6	1
151	Gut endocrine cell development. Molecular and Cellular Endocrinology, 2010, 323, 70-75.	3.2	94
152	The FoxA factors in organogenesis and differentiation. Current Opinion in Genetics and Development, 2010, 20, 527-532.	3.3	178
153	FoxF1 and FoxL1 Link Hedgehog Signaling and the Control of Epithelial Proliferation in the Developing Stomach and Intestine. Journal of Biological Chemistry, 2009, 284, 5936-5944.	3.4	118
154	The Transcriptional Response of the Islet to Pregnancy in Mice. Molecular Endocrinology, 2009, 23, 1702-1712.	3.7	138
155	Foxl1 is a marker of bipotential hepatic progenitor cells in mice. Hepatology, 2009, 49, 920-929.	7.3	116
156	The evolution of Fox genes and their role in development and disease. Nature Reviews Genetics, 2009, 10, 233-240.	16.3	550
157	CRTC2 (TORC2) Contributes to the Transcriptional Response to Fasting in the Liver but Is Not Required for the Maintenance of Glucose Homeostasis. Cell Metabolism, 2009, 10, 55-62.	16.2	78
158	Jagged1 is a competitive inhibitor of Notch signaling in the embryonic pancreas. Mechanisms of Development, 2009, 126, 687-699.	1.7	47
159	Foxa1 and Foxa2 Control the Differentiation of Goblet and Enteroendocrine L- and D-Cells in Mice. Gastroenterology, 2009, 137, 2052-2062.	1.3	131
160	Foxa1 and Foxa2 regulate bile duct development in mice. Journal of Clinical Investigation, 2009, 119, 1537-1545.	8.2	123
161	A Two-Step Pathway to Resist Fasting. Cell Metabolism, 2008, 8, 449-451.	16.2	2
162	Dynamic regulation of <i>Pdx1</i> enhancers by Foxa1 and Foxa2 is essential for pancreas development. Genes and Development, 2008, 22, 3435-3448.	5.9	262

#	Article	IF	CITATIONS
163	Cis-regulatory modules in the mammalian liver: composition depends on strength of Foxa2 consensus site. Nucleic Acids Research, 2008, 36, 4149-4157.	14.5	38
164	Expansion of adult beta-cell mass in response to increased metabolic demand is dependent on HNF-4Â. Genes and Development, 2007, 21, 756-769.	5.9	145
165	Impaired male fertility and atrophy of seminiferous tubules caused by haploinsufficiency for Foxa3. Developmental Biology, 2007, 306, 636-645.	2.0	33
166	SnapShot:Forkhead Transcription Factors I. Cell, 2007, 130, 1160.e1-1160.e2.	28.9	122
167	SnapShot: Forkhead Transcription Factors II. Cell, 2007, 131, 192-192.e1.	28.9	114
168	Foxa2 Controls Vesicle Docking and Insulin Secretion in Mature β Cells. Cell Metabolism, 2007, 6, 267-279.	16.2	79
169	Foxl1â€Cre BAC transgenic mice: a new tool for gene ablation in the gastrointestinal mesenchyme. Genesis, 2007, 45, 518-522.	1.6	22
170	β Cell transplantation and immunosuppression: can't live with it, can't live without it. Journal of Clinical Investigation, 2007, 117, 2380-2382.	8.2	7
171	Of Cilia and Cysts: Modeling Pancreatic Polycystic Disease. Gastroenterology, 2006, 130, 926-928.	1.3	7
172	Novel genes identified by manual annotation and microarray expression analysis in the pancreas. Genomics, 2006, 88, 752-761.	2.9	6
173	βâ€Catenin: A Principal Inâ€Vivo Mediator of HGFâ€induced Liver Growth. FASEB Journal, 2006, 20, A1079.	0.5	0
174	Regeneration of Pancreatic Islets After Partial Pancreatectomy in Mice Does Not Involve the Reactivation of Neurogenin-3. Diabetes, 2006, 55, 269-272.	0.6	97
175	The initiation of liver development is dependent on Foxa transcription factors. Nature, 2005, 435, 944-947.	27.8	512
176	Glucocorticoid Receptor-Dependent Gene Regulatory Networks. PLoS Genetics, 2005, 1, e16.	3.5	207
177	Identification of Transcriptional Networks during Liver Regeneration. Journal of Biological Chemistry, 2005, 280, 3715-3722.	3.4	107
178	Compensatory Roles of Foxa1 and Foxa2 during Lung Morphogenesis. Journal of Biological Chemistry, 2005, 280, 13809-13816.	3.4	242
179	The Making of the Liver: Competence in the Foregut Endoderm and Induction of Liver-Specific Genes. Cell Cycle, 2005, 4, 1146-1148.	2.6	40
180	Foxa2 integrates the transcriptional response of the hepatocyte to fasting. Cell Metabolism, 2005, 2, 141-148.	16.2	155

#	Article	IF	CITATIONS
181	Collecting new targets in MODY. Cell Metabolism, 2005, 2, 342-344.	16.2	1
182	Foxa2 is required for the differentiation of pancreatic α-cells. Developmental Biology, 2005, 278, 484-495.	2.0	169
183	Foxa2 regulates alveolarization and goblet cell hyperplasia. Development (Cambridge), 2004, 131, 953-964.	2.5	248
184	Mild Nephrogenic Diabetes Insipidus Caused by Foxa1 Deficiency. Journal of Biological Chemistry, 2004, 279, 41936-41941.	3.4	27
185	Development of gut endocrine cells. Best Practice and Research in Clinical Endocrinology and Metabolism, 2004, 18, 453-462.	4.7	37
186	The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Developmental Biology, 2004, 276, 74-88.	2.0	183
187	Foxa2 regulates multiple pathways of insulin secretion. Journal of Clinical Investigation, 2004, 114, 512-520.	8.2	149
188	Cellular and molecular mechanisms of carcinogenesis. Hematology/Oncology Clinics of North America, 2003, 17, 361-376.	2.2	0
189	Transcriptional Program of the Endocrine Pancreas in Mice and Humans. Diabetes, 2003, 52, 1604-1610.	0.6	52
190	Generation of a conditionally null allele ofhnf4?. Genesis, 2002, 32, 130-133.	1.6	41
191	The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development (Cambridge), 2002, 129, 2619-2628.	2.5	489
192	Fas-induced apoptosis in mouse hepatocytes is dependent on C/EBPβ. Hepatology, 2001, 33, 1166-1172.	7.3	13
193	Foxa3 (Hepatocyte Nuclear Factor 3γ) Is Required for the Regulation of Hepatic GLUT2 Expression and the Maintenance of Glucose Homeostasis during a Prolonged Fast. Journal of Biological Chemistry, 2001, 276, 42812-42817.	3.4	93
194	Hepatocyte Nuclear Factor 3β (Foxa2) Is Dispensable for Maintaining the Differentiated State of the Adult Hepatocyte. Molecular and Cellular Biology, 2000, 20, 5175-5183.	2.3	132
195	The Hepatocyte Nuclear Factor 3 (HNF3 or FOXA) Family in Metabolism. Trends in Endocrinology and Metabolism, 2000, 11, 281-285.	7.1	149
196	Targeted Disruption of the Gene Encoding Hepatocyte Nuclear Factor 3 ^{ĵ3} Results in Reduced Transcription of Hepatocyte-Specific Genes. Molecular and Cellular Biology, 1998, 18, 4245-4251.	2.3	132
197	Expression of the gut-enriched Krüppel-like factor gene during development and intestinal tumorigenesis. FEBS Letters, 1997, 419, 239-243.	2.8	100
198	The HNF-3 Gene Family of Transcription Factors in Mice: Gene Structure, cDNA Sequence, and mRNA Distribution. Genomics, 1994, 20, 377-385.	2.9	201