Jun Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2982963/publications.pdf

Version: 2024-02-01

		159585	88630
109	5,200	30	70
papers	citations	h-index	g-index
109	109	109	7909
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Topologically protecting squeezed light on a photonic chip. Photonics Research, 2022, 10, 456.	7.0	9
2	General heavy-flavor mass scheme for charged-current DIS at NNLO and beyond. Physical Review D, 2022, 105, .	4.7	2
3	Experimental quantum simulation of dynamic localization on curved photonic lattices. Photonics Research, 2022, 10, 1430.	7.0	4
4	Topologically Protected Polarization Quantum Entanglement on a Photonic Chip., 2022, 1, 100003.		16
5	Quantum advantage with membosonsampling. , 2022, 1, 100007.		13
6	Decay of the charged Higgs boson and the top quark in two-Higgs-doublet model at NNLO in QCD. Journal of High Energy Physics, 2022, 2022, .	4.7	1
7	NNLO constraints on proton PDFs from the SeaQuest and STAR experiments and other developments in the CTEQ-TEA global analysis. SciPost Physics Proceedings, 2022, , .	0.4	6
8	Experimental topological photonic superlattice. Physical Review B, 2021, 103, .	3.2	12
9	Decoy-State Quantum Key Distribution Over a Long-Distance High-Loss Air-Water Channel. Physical Review Applied, 2021, 15, .	3.8	20
10	Observing movement of Dirac cones from single-photon dynamics. Physical Review B, 2021, 103, .	3.2	4
11	Constraints on neutrino non-standard interactions from LHC data with large missing transverse momentum. Journal of High Energy Physics, 2021, 2021, 1.	4.7	5
12	Investigating bottom-quark Yukawa interaction at Higgs factory *. Chinese Physics C, 2021, 45, 023105.	3.7	3
13	Energy-energy correlation in hadronic Higgs decays: analytic results and phenomenology at NLO. Journal of High Energy Physics, 2021, 2021, 1.	4.7	14
14	Symmetry-Induced Error Filtering in a Photonic Lieb Lattice. Physical Review Letters, 2021, 126, 110501.	7.8	12
15	Topologically protecting quantum resources with sawtooth lattices. Optics Letters, 2021, 46, 1584.	3.3	2
16	Fast correlated-photon imaging enhanced by deep learning. Optica, 2021, 8, 323.	9.3	15
17	Top-quark mass determination from t-channel single top production at the LHC. Journal of High Energy Physics, 2021, 2021, 1.	4.7	1
18	Experimental demonstration of a quantum anomaly induced by borders. Physical Review A, 2021, 104, .	2.5	1

#	Article	IF	CITATIONS
19	Hadronic decays of Higgs boson at NNLO matched with parton shower. Journal of High Energy Physics, 2021, 2021, 1.	4.7	7
20	Multistage quantum swapping of vacuum-one-photon entanglement. Physical Review A, 2021, 104, .	2.5	3
21	Thresholded single-photon underwater imaging and detection. Optics Express, 2021, 29, 28124.	3.4	8
22	Quantum superposition demonstrated higher-order topological bound states in the continuum. Light: Science and Applications, 2021, 10, 173.	16.6	33
23	Two-dimensional quantum walks of correlated photons. Optica, 2021, 8, 1129.	9.3	23
24	Experimentally Detecting Quantized Zak Phases without Chiral Symmetry in Photonic Lattices. Physical Review Letters, 2021, 127, 147401.	7.8	43
25	Differential distributions for single top quark production at the LHeC. Physical Review D, 2021, 104, .	4.7	3
26	New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC. Physical Review D, 2021, 103, .	4.7	298
27	Quantum computation for pricing the collateralized debt obligations. Quantum Engineering, 2021, 3, e84.	2.5	13
28	128 Identical Quantum Sources Integrated on a Single Silica Chip. Physical Review Applied, 2021, 16, .	3.8	5
29	Constructing higher-order topological states in higher dimensions. Physical Review B, 2021, 104, .	3.2	12
30	Reconstruction of quantum channel via convex optimization. Science Bulletin, 2020, 65, 286-292.	9.0	14
31	Integrated Quantum-Walk Structure and NAND Tree on a Photonic Chip. Physical Review Letters, 2020, 125, 160502.	7.8	5
32	Modeling of t-channel single top-quark production at the LHC. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 811, 135886.	4.1	6
33	Quantum simulation of particle pair creation near the event horizon. National Science Review, 2020, 7, 1476-1484.	9.5	12
34	Hacking Quantum Key Distribution via Injection Locking. Physical Review Applied, 2020, 13, .	3.8	21
35	Vector Vortex Beam Emitter Embedded in a Photonic Chip. Physical Review Letters, 2020, 124, 153601.	7.8	47
36	A scalable photonic computer solving the subset sum problem. Science Advances, 2020, 6, eaay5853.	10.3	32

#	Article	IF	CITATIONS
37	Quantum fast hitting on glued trees mapped on a photonic chip. Optica, 2020, 7, 613.	9.3	9
38	Real-space observation of topological invariants in 2D photonic systems. Optics Express, 2020, 28, 39492.	3.4	4
39	Quantum Topological Boundary States in Quasiâ€Crystals. Advanced Materials, 2019, 31, e1905624.	21.0	22
40	Higgs boson decay into four bottom quarks in the SM and beyond. Journal of High Energy Physics, 2019, 2019, 1.	4.7	4
41	Direct Observation of Topology from Single-Photon Dynamics. Physical Review Letters, 2019, 122, 193903.	7.8	70
42	Precision Higgs physics at the CEPC *. Chinese Physics C, 2019, 43, 043002.	3.7	89
43	Thrust distribution in Higgs decays at the next-to-leading order and beyond. Journal of High Energy Physics, 2019, 2019, 1.	4.7	13
44	Photonic Newton's Cradle for Remote Energy Transport. Physical Review Applied, 2019, 11, .	3.8	8
45	Experimental Quantum Stochastic Walks Simulating Associative Memory of Hopfield Neural Networks. Physical Review Applied, 2019, 11, .	3.8	17
46	Production and Hadronic Decays of Higgs Bosons in Heavy-Ion Collisions. Physical Review Letters, 2019, 122, 041803.	7.8	3
47	Parity-Induced Thermalization Gap in Disordered Ring Lattices. Physical Review Letters, 2019, 122, 013903.	7.8	22
48	Integrated measurement server for measurement-device-independent quantum key distribution network. Optics Express, 2019, 27, 5982.	3.4	13
49	On-chip rotated polarization directional coupler fabricated by femtosecond laser direct writing. Optics Letters, 2019, 44, 102.	3.3	22
50	Mapping and measuring large-scale photonic correlation with single-photon imaging. Optica, 2019, 6, 244.	9.3	9
51	Topological protection of two-photon quantum correlation on a photonic chip. Optica, 2019, 6, 955.	9.3	70
52	Transmission of photonic polarization states through 55-m water: towards air-to-sea quantum communication. Photonics Research, 2019, 7, A40.	7.0	42
53	Probing proton structure at the Large Hadron electron Collider. SciPost Physics, 2019, 7, .	4.9	15
54	Experimental Test of Tracking the King Problem. Research, 2019, 2019, 3474305.	5.7	4

#	Article	IF	Citations
55	CT14 intrinsic charm parton distribution functions from CTEQ-TEA global analysis. Journal of High Energy Physics, 2018, 2018, 1.	4.7	51
56	The structure of the proton in the LHC precision era. Physics Reports, 2018, 742, 1-121.	25.6	144
57	Probing light-quark Yukawa couplings via hadronic event shapes at lepton colliders. Journal of High Energy Physics, 2018, 2018, 1.	4.7	19
58	s -channel single top quark production and decay at next-to-next-to-leading-order in QCD. Physical Review D, 2018, 98, .	4.7	15
59	CTEQ-TEA parton distribution functions with intrinsic charm. EPJ Web of Conferences, 2018, 192, 00003.	0.3	0
60	Entanglement activation from quantum coherence and superposition. Physical Review A, 2018, 98, .	2.5	16
61	Experimental test of the relation between coherence and path information. Communications Physics, $2018,1,.$	5. 3	9
62	Towards ultimate parton distributions at the high-luminosity LHC. European Physical Journal C, 2018, 78, 962.	3.9	32
63	Mapping the sensitivity of hadronic experiments to nucleon structure. Physical Review D, 2018, 98, .	4.7	21
64	Mapping Twisted Light into and out of a Photonic Chip. Physical Review Letters, 2018, 121, 233602.	7.8	59
65	A broadband DLCZ quantum memory in room-temperature atoms. Communications Physics, 2018, 1, .	5.3	33
66	Experimental quantum fast hitting on hexagonal graphs. Nature Photonics, 2018, 12, 754-758.	31.4	89
67	Direct observation of broadband nonclassical states in a room-temperature light–matter interface. Npj Quantum Information, 2018, 4, .	6.7	8
68	Massive charged-current coefficient functions in deep-inelastic scattering at NNLO and impact on strange-quark distributions. Journal of High Energy Physics, 2018, 2018, 1.	4.7	20
69	Experimental two-dimensional quantum walk on a photonic chip. Science Advances, 2018, 4, eaat3174.	10.3	182
70	Experimental Machine Learning of Quantum States. Physical Review Letters, 2018, 120, 240501.	7.8	101
71	CTEQ-TEA parton distribution functions and HERA Run I and II combined data. Physical Review D, 2017, 95, .	4.7	29
72	Reconstruction of Monte Carlo replicas from Hessian parton distributions. Journal of High Energy Physics, 2017, 2017, 1.	4.7	30

#	Article	IF	CITATIONS
73	Differential distributions for t-channel single top-quark production and decay at next-to-next-to-leading order in QCD. Journal of High Energy Physics, 2017, 2017, 1.	4.7	45
74	Top-quark pair-production and decay at high precision. Physical Review D, 2017, 96, .	4.7	13
75	Towards quantum communications in free-space seawater. Optics Express, 2017, 25, 19795.	3.4	97
76	NNLO QCD corrections to <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>t</mml:mi></mml:math> -channel single top quark production and decay. Physical Review D, 2016, 94, .	4.7	55
77	PDF4LHC recommendations for LHC Run II. Journal of Physics G: Nuclear and Particle Physics, 2016, 43, 023001.	3.6	875
78	Invisibility Cloak Printed on a Photonic Chip. Scientific Reports, 2016, 6, 28527.	3.3	13
79	Non-classical photon correlation in a two-dimensional photonic lattice. Optics Express, 2016, 24, 12607.	3.4	16
80	Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD. Physical Review Letters, 2016, 116, 212002.	7.8	41
81	New parton distribution functions from a global analysis of quantum chromodynamics. Physical Review D, 2016, 93, .	4.7	901
82	Diphoton excess at 750 GeV: gluon–gluon fusion or quark–antiquark annihilation?. European Physical Journal C, 2016, 76, 1.	3.9	14
83	Hadronic production ofWandZbosons at large transverse momentum. Physical Review D, 2015, 91, .	4.7	2
84	The PDF4LHC report on PDFs and LHC data: results from Run I and preparation for Run II. Journal of Physics G: Nuclear and Particle Physics, 2015, 42, 103103.	3.6	77
85	Constraints on Randall-Sundrum model from the events of dijet production with QCD next-to-leading order accuracy at the LHC. Physical Review D, 2015, 91, .	4.7	1
86	Top Quark Forward-Backward Asymmetry in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml< td=""><td>.mo>+<td>ml:mo></td></td></mml<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:mrow></mml:math>	.mo>+ <td>ml:mo></td>	ml:mo>
87	Electroweak production of top-quark pairs in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>e</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mi>at NNLO in OCD: The vector current contributions. Physical Review D. 2014. 90</mml:mi></mml:math>	e <td>ni> (mml:mo></td>	ni> (mml:mo>
88	Higgs boson cross section from CTEQ-TEA global analysis. Physical Review D, 2014, 89, .	4.7	23
89	Intrinsic charm parton distribution functions from CTEQ-TEA global analysis. Physical Review D, 2014, 89, .	4.7	58
90	CT10 next-to-next-to-leading order global analysis of QCD. Physical Review D, 2014, 89, .	4.7	300

#	Article	IF	Citations
91	NNLL momentum-space threshold resummation in direct top quark production at the LHC. Journal of High Energy Physics, 2014, 2014, 1.	4.7	4
92	Differentiating the production mechanisms of the Higgs-like resonance using inclusive observables at hadron colliders. Journal of High Energy Physics, 2014, 2014, 1.	4.7	4
93	A meta-analysis of parton distribution functions. Journal of High Energy Physics, 2014, 2014, 1.	4.7	84
94	Parton distribution benchmarking with LHC data. Journal of High Energy Physics, 2013, 2013, 1.	4.7	104
95	Charm quark mass dependence in a global QCD analysis. European Physical Journal C, 2013, 73, 1.	3.9	24
96	MEKS: A program for computation of inclusive jet cross sections at hadron colliders. Computer Physics Communications, 2013, 184, 1626-1642.	7.5	30
97	Top-Quark Decay at Next-to-Next-to-Leading Order in QCD. Physical Review Letters, 2013, 110, 042001.	7.8	135
98	NLO QCD corrections to dijet production via quark contact interactions. Journal of High Energy Physics, 2012, 2012, 1.	4.7	15
99	Model-independent analysis of top quark forward-backward asymmetry at the Tevatron up toO($\hat{l}\pm s2/\hat{b}2$). Physical Review D, 2011, 84, .	4.7	13
100	One-loop helicity amplitudes for top quark pair production in Randall-Sundrum model. Journal of High Energy Physics, 2011, 2011, 1.	4.7	6
101	Higgs Boson Production via Gluon Fusion in the Standard Model with four Generations. Physical Review D, 2011, 83, .	4.7	16
102	Next-to-leading order QCD corrections to mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline">associated production via the flavor-co-hanging neutral-current couplings at hadron colliders. Physical Review D, 2011, 83, .	4.7	20
103	xmlns:mml="http://www.w3.org/1998/Math/Math/ML" display="inline"> <mml:mi>t</mml:mi> (mml:mi>/mml:mi>/mml:mi>/mml:mi>/mml:math>associated production via model-independent flavor-changing neutral-current couplings at hadron colliders. Physical Review D,	4.7	14
104	Next-to-leading order QCD predictions forA0γassociated production at the CERN Large Hadron Collider. Physical Review D, 2011, 83, .	4.7	0
105	Next-to-Leading QCD Effect on the Quark Compositeness Search at the LHC. Physical Review Letters, 2011, 106, 142001.	7.8	24
106	Searching for Anomalous Top Quark Production at the Early LHC. Physical Review Letters, 2011, 107, 092002.	7.8	23
107	Next-to-leading order QCD corrections to the top quark decay via the flavor-changing neutral-current operators with mixing effects. Physical Review D, 2010, 82, .	4.7	17
108	Next-to-leading order QCD corrections to the single top quark production via model-independent <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>t</mml:mi>q<mml:mi>g</mml:mi></mml:math> flavor-changing neutral-current couplings at hadron colliders. Physical Review D, 2009, 80, .	4.7	19

#	Article	IF	CITATIONS
109	Next-to-Leading-Order QCD Corrections to the Top-Quark Decay via Model-Independent Flavor-Changing Neutral-Current Couplings. Physical Review Letters, 2009, 102, 072001.	7.8	50