Mazin Jouda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2982103/publications.pdf

Version: 2024-02-01

1684188 1474206 21 104 5 9 citations h-index g-index papers 29 29 29 101 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	"Small is beautiful―in NMR. Journal of Magnetic Resonance, 2019, 306, 112-117.	2.1	21
2	A comparison of Lenz lenses and LC resonators for NMR signal enhancement. Concepts in Magnetic Resonance Part B, 2017, 47B, e21357.	0.7	12
3	Implementation of an inâ€field CMOS frequency division multiplexer for 9.4 T magnetic resonance applications. International Journal of Circuit Theory and Applications, 2015, 43, 1861-1878.	2.0	10
4	Broadband and multi-resonant sensors for NMR. Progress in Nuclear Magnetic Resonance Spectroscopy, 2019, 112-113, 34-54.	7.5	10
5	Deep regression with ensembles enables fast, first-order shimming in low-field NMR. Journal of Magnetic Resonance, 2022, 336, 107151.	2.1	8
6	A new fully integrated multichannel receiver design for magnetic resonance imaging. Concepts in Magnetic Resonance Part B, 2016, 46B, 134-145.	0.7	5
7	Gradient-Induced Mechanical Vibration of Neural Interfaces During MRI. IEEE Transactions on Biomedical Engineering, 2020, 67, 915-923.	4.2	5
8	Net-phase flow NMR for compact applications. Journal of Magnetic Resonance, 2022, 341, 107233.	2.1	5
9	Automatic Adaptive Gain for Magnetic Resonance Sensitivity Enhancement. Analytical Chemistry, 2019, 91, 2376-2383.	6.5	4
10	Geometrically-differential NMR in a stripline front-end. Journal of Magnetic Resonance, 2020, 310, 106659.	2.1	4
11	Nuclear Magnetic Resonance Microscopy for In Vivo Metabolomics, Digitally Twinned by Computational Systems Biology, Needs a Sensitivity Boost. Sensors and Materials, 2018, , 157.	0.5	4
12	ArduiTaM: accurate and inexpensive NMR auto tune and match system. Magnetic Resonance, 2020, 1 , $105-113$.	1.9	4
13	CMOS 8-channel frequency division multiplexer for 9.4 T magnetic resonance imaging. , 2013, , .		2
14	Characterization of a Wireless Vacuum Sensor Prototype Based on the SAW-Pirani Principle. Processes, 2020, 8, 1685.	2.8	2
15	A tesla-order magnetic field effect on all-optical thermometry using photoluminescence spectrum of diamond NV ^{â^'} center. Japanese Journal of Applied Physics, 2021, 60, 012001.	1.5	2
16	Selective excitation enables encoding and measurement of multiple diffusion parameters in a single experiment. Magnetic Resonance, 2021, 2, 835-842.	1.9	2
17	Circuit level simulation of <scp>MRI</scp> receive chain using excitation derived from images. Concepts in Magnetic Resonance Part B, 2014, 44, 102-113.	0.7	1
18	Magnetostatic reciprocity for MR magnet design. Magnetic Resonance, 2021, 2, 607-617.	1.9	1

MAZIN JOUDA

#	Article	IF	CITATIONS
19	Topologically optimized magnetic lens for magnetic resonance applications. Magnetic Resonance, 2020, 1, 225-236.	1.9	1
20	A multi-purpose, rolled-up, double-helix resonator. Journal of Magnetic Resonance, 2019, 309, 106599.	2.1	0
21	Motion prediction enables simulated MR-imaging of freely moving model organisms. PLoS Computational Biology, 2019, 15, e1006997.	3.2	0