Stefan Will

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2982052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A versatile fibre-based setup for two-line atomic fluorescence thermometry in aerosol processes. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 278, 108042.	2.3	1
2	Characterisation of the transition type in optical band gap analysis of in-flame soot. Combustion and Flame, 2022, 243, 111986.	5.2	7
3	Measurement of Secondary Structure Changes in Poly-L-lysine and Lysozyme during Acoustically Levitated Single Droplet Drying Experiments by In Situ Raman Spectroscopy. Sensors, 2022, 22, 1111.	3.8	5
4	Burst-mode 1-methylnaphthalene laser-induced fluorescence: extended calibration and measurement of temperature and fuel partial density in a rapid compression machine. Applied Physics B: Lasers and Optics, 2022, 128, .	2.2	2
5	4D temperature measurements using tomographic two-color pyrometry. Optics Express, 2021, 29, 5304.	3.4	21
6	Carnot battery: Simulation and design of a reversible heat pump-organic Rankine cycle pilot plant. Applied Energy, 2021, 288, 116650.	10.1	42
7	Measurement of Water Mole Fraction from Acoustically Levitated Pure Water and Protein Water Solution Droplets via Tunable Diode Laser Absorption Spectroscopy (TDLAS) at 1.37 µm. Applied Sciences (Switzerland), 2021, 11, 5036.	2.5	5
8	Simulation of the Part Load Behavior of Combined Heat Pump-Organic Rankine Cycle Systems. Energies, 2021, 14, 3870.	3.1	10
9	In situ characterisation of absorbing species in stationary premixed flat flames using UV–Vis absorption spectroscopy. Applied Physics B: Lasers and Optics, 2021, 127, 1.	2.2	4
10	Impact of Oxygenated Additives on Soot Properties during Diesel Combustion. Energies, 2021, 14, 147.	3.1	13
11	3D mapping of polycyclic aromatic hydrocarbons, hydroxyl radicals, and soot volume fraction in sooting flames using FRAME technique. Applied Physics B: Lasers and Optics, 2021, 127, 1.	2.2	3
12	Three-dimensional particle size determination in a laminar diffusion flame by tomographic laser-induced incandescence. Applied Physics B: Lasers and Optics, 2021, 127, .	2.2	12
13	In Situ Determination of Droplet and Nanoparticle Size Distributions in Spray Flame Synthesis by Wide-Angle Light Scattering (WALS). Materials, 2021, 14, 6698.	2.9	8
14	Herriott cell enhanced SMF-coupled multi-scalar combustion diagnostics in a rapid compression expansion machine by supercontinuum laser absorption spectroscopy. Optics Express, 2021, 29, 42184.	3.4	1
15	An optimized evaluation strategy for a comprehensive morphological soot nanoparticle aggregate characterization by electron microscopy. Journal of Aerosol Science, 2020, 139, 105470.	3.8	28
16	Pumped thermal energy storage with heat pump-ORC-systems: Comparison of latent and sensible thermal storages for various fluids. Applied Energy, 2020, 280, 115940.	10.1	51
17	Life Cycle Assessment of a Reversible Heat Pump–Organic Rankine Cycle–Heat Storage System with Geothermal Heat Supply. Energies, 2020, 13, 3253.	3.1	21
18	Planar droplet sizing for studying the influence of ethanol admixture on the spray structure of gasoline sprays. Experiments in Fluids, 2020, 61, 1.	2.4	10

#	Article	IF	CITATIONS
19	Spatially-resolved crystallinity determination of polymer welding seams by Raman-microscopy. Procedia CIRP, 2020, 94, 796-801.	1.9	3
20	Application of FRAME for Simultaneous LIF and LII Imaging in Sooting Flames Using a Single Camera. Sensors, 2020, 20, 5534.	3.8	5
21	Droplet sizing in spray flame synthesis using wide-angle light scattering (WALS). Applied Physics B: Lasers and Optics, 2020, 126, 1.	2.2	14
22	Laser-induced incandescence. Applied Physics B: Lasers and Optics, 2020, 126, 1.	2.2	0
23	Characterization of the phosphor (Sr,Ca)SiAlN3: Eu2+ for temperature sensing. Journal of Luminescence, 2020, 226, 117487.	3.1	10
24	Design aspects of a reversible heat pump - Organic rankine cycle pilot plant for energy storage. Energy, 2020, 208, 118216.	8.8	33
25	Shifted-excitation rotational Raman spectroscopy and Bayesian inference for in situ temperature and composition determination in laminar flames. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 249, 106996.	2.3	4
26	UV absorption cross sections of vaporized 1-methylnaphthalene at elevated temperatures. Applied Physics B: Lasers and Optics, 2020, 126, 1.	2.2	7
27	Inferring soot morphology through multi-angle light scattering using an artificial neural network. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 251, 106957.	2.3	12
28	Characterization of fuel/water mixtures and emulsions with ethanol using laser-induced fluorescence. Applied Optics, 2020, 59, 1136.	1.8	15
29	Stability Analysis of the Fluorescent Tracer 1-Methylnaphthalene for IC Engine Applications by Supercontinuum Laser Absorption Spectroscopy. Sensors, 2020, 20, 2871.	3.8	6
30	Correlation of the kinetics of aggregation and inactivation of L-glutamate dehyrogenase during drying and particle formation of a levitated microdroplet. Drying Technology, 2019, 37, 164-172.	3.1	3
31	Influence of EGR and ethanol blending on soot formation in a DISI engine. Proceedings of the Combustion Institute, 2019, 37, 4965-4972.	3.9	17
32	Analysis of ethanol and butanol direct-injection spark-ignition sprays using two-phase structured laser illumination planar imaging droplet sizing. International Journal of Spray and Combustion Dynamics, 2019, 11, 175682771877249.	1.0	15
33	Soot aggregate sizing in an extended premixed flame by high-resolution two-dimensional multi-angle light scattering (2D-MALS). Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	15
34	Thermal and mutual diffusivities of fuel-related binary liquid mixtures under pre-combustion conditions. Fuel, 2019, 242, 562-572.	6.4	27
35	(Gd,Lu)AlO ₃ :Dy ³⁺ and (Gd,Lu) ₃ Al ₅ O ₁₂ :Dy ³⁺ as high-temperature thermographic phosphors. Measurement Science and Technology, 2019, 30, 034001.	2.6	12
36	Investigation of Soot Formation in a Novel Diesel Fuel Burner. Energies, 2019, 12, 1993.	3.1	7

#	Article	IF	CITATIONS
37	Can soot primary particle size distributions be determined using laser-induced incandescence?. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	30
38	Fluorescence characteristics of the fuel tracer 1-methylnaphthalene for the investigation of equivalence ratio and temperature in an oxygen-containing environment. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	4
39	Characterization of Nile Red as a Tracer for Laser-Induced Fluorescence Spectroscopy of Gasoline and Kerosene and Their Mixture with Biofuels. Sensors, 2019, 19, 2822.	3.8	16
40	Analysis of the LIF/Mie Ratio from Individual Droplets for Planar Droplet Sizing: Application to Gasoline Fuels and Their Mixtures with Ethanol. Applied Sciences (Switzerland), 2019, 9, 4900.	2.5	11
41	High-speed, inline measurement of protein activity and inactivation processes by supercontinuum attenuation spectroscopy. Analyst, The, 2019, 144, 7041-7048.	3.5	1
42	Rotational Raman spectroscopy for in situ temperature and composition determination in reactive flows. , 2019, , .		1
43	3D mapping of droplet Sauter mean diameter in sprays. Applied Optics, 2019, 58, 3775.	1.8	24
44	Untersuchung der Rußbildung und Rußoxidation von Ethanol- und Butanolgemischen in einem Transparentmotor mit Benzindirekteinspritzung. Proceedings, 2019, , 79-93.	0.3	0
45	Characterization of a silica-aerosol in a sintering process by wide-angle light scattering and principal component analysis. Journal of Aerosol Science, 2018, 119, 62-76.	3.8	10
46	Investigation of soot formation and oxidation of ethanol and butanol fuel blends in a DISI engine at different exhaust gas recirculation rates. Applied Energy, 2018, 209, 426-434.	10.1	36
47	In situ analysis of aerosols by Raman spectroscopy – Crystalline particle polymorphism and gas-phase temperature. Journal of Aerosol Science, 2018, 126, 143-151.	3.8	9
48	Temperature determination of superheated water vapor by rotational-vibrational Raman spectroscopy. Optics Letters, 2018, 43, 4477.	3.3	5
49	Burst-mode OH/CH ₂ O planar laser-induced fluorescence imaging of the heat release zone in an unsteady flame. Optics Express, 2018, 26, 18105.	3.4	15
50	Generation of high-energy, kilohertz-rate narrowband tunable ultraviolet pulses using a burst-mode dye laser system. Optics Letters, 2018, 43, 1191.	3.3	22
51	Temperature-dependent luminescence characteristics of Dy3+ doped in various crystalline hosts. Journal of Luminescence, 2018, 204, 64-74.	3.1	34
52	Plasma-Assisted Biomass Gasification with Focus on Carbon Conversion and Reaction Kinetics Compared to Thermal Gasification. Energies, 2018, 11, 1302.	3.1	21
53	Reversible Heat Pump–Organic Rankine Cycle Systems for the Storage of Renewable Electricity. Energies, 2018, 11, 1352.	3.1	45
54	Multiparameter Characterization of Aerosols. Chemie-Ingenieur-Technik, 2018, 90, 923-936.	0.8	14

#	Article	IF	CITATIONS
55	Analysis of LIF and Mie signals from single micrometric droplets for instantaneous droplet sizing in sprays. Optics Express, 2018, 26, 31750.	3.4	19
56	In situ monitoring of aerosols by Raman spectroscopy $\hat{a} {\in} ``$ particle polymorphism and gas-phase temperature. , 2018, , .		0
57	Characterization of YAG:Dy,Er for thermographic particle image velocimetry in a calibration cell. Measurement Science and Technology, 2017, 28, 025013.	2.6	9
58	Untersuchungen zum Einfluss von Ethanolzumischung auf die Rußbildung bei der Benzindirekteinspritzung. Proceedings, 2017, , 425-438.	0.3	0
59	On the effect of ionic wind on structure and temperature of laminar premixed flames influenced by electric fields. Combustion and Flame, 2017, 176, 391-399.	5.2	37
60	Thermo-fluid dynamic model for horizontal packed bed thermal energy storages. Energy Procedia, 2017, 135, 51-61.	1.8	8
61	Raman microspectroscopy and multivariate data analysis: optical differentiation of aqueous d- and I-tryptophan solutions. Physical Chemistry Chemical Physics, 2017, 19, 30533-30539.	2.8	13
62	Investigation of mixture formation in a diesel spray by tracer-based laser-induced fluorescence using 1-methylnaphthalene. Proceedings of the Combustion Institute, 2017, 36, 4497-4504.	3.9	18
63	Influence of Sodium Chloride on the Formation and Dissociation Behavior of CO ₂ Gas Hydrates. Journal of Physical Chemistry B, 2017, 121, 8330-8337.	2.6	19
64	High-speed combustion diagnostics in a rapid compression machine by broadband supercontinuum absorption spectroscopy. Applied Optics, 2017, 56, 4443.	2.1	29
65	Influence of ethanol admixture on the determination of equivalence ratios in DISI engines by laser-induced fluorescence. Applied Optics, 2016, 55, 8532.	2.1	6
66	Two-phase SLIPI for instantaneous LIF and Mie imaging of transient fuel sprays. Optics Letters, 2016, 41, 5422.	3.3	31
67	Novel electric thermophoretic sampling device with highly repeatable characteristics. Review of Scientific Instruments, 2016, 87, 125108.	1.3	10
68	Supercontinuum high-speed cavity-enhanced absorption spectroscopy for sensitive multispecies detection. Optics Letters, 2016, 41, 2322.	3.3	5
69	A shiftedâ€excitation Raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference. Journal of Raman Spectroscopy, 2016, 47, 198-209.	2.5	70
70	Investigation of soot formation of spark-ignited ethanol-blended gasoline sprays with single- and multi-component base fuels. Applied Energy, 2016, 181, 278-287.	10.1	34
71	Investigations on particle diffusion in porous glass by angle-dependent dynamic light scattering. Journal of Molecular Liquids, 2016, 222, 972-980.	4.9	6
72	Raman excess spectroscopy vs. principal component analysis: probing the intermolecular interactions between chiral molecules and imidazolium-based ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 28370-28375.	2.8	3

#	Article	IF	CITATIONS
73	Investigating the Moisture Content of Polyamide 6 by Raman-Microscopy and Multivariate Data Analysis. Physics Procedia, 2016, 83, 1271-1278.	1.2	3
74	A mobile system for a comprehensive online-characterization of nanoparticle aggregates based on wide-angle light scattering and laser-induced incandescence. Review of Scientific Instruments, 2016, 87, 053102.	1.3	25
75	Supercontinuum based absorption spectrometer for cycle-resolved multiparameter measurements in a rapid compression machine. Applied Optics, 2016, 55, 4564.	2.1	18
76	Sizing aerosolized fractal nanoparticle aggregates through Bayesian analysis of wide-angle light scattering (WALS) data. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184, 27-39.	2.3	37
77	Combustion and Sooting Behavior of Spark-Ignited Ethanol–Isooctane Sprays under Stratified Charge Conditions. Energy & Fuels, 2016, 30, 6080-6090.	5.1	13
78	Simultaneous two-dimensional measurement of fuel–air ratio and temperature in a direct-injection spark-ignition engine using a new tracer-pair laser-induced fluorescence technique. International Journal of Engine Research, 2016, 17, 120-128.	2.3	11
79	How Sodium Chloride Salt Inhibits the Formation of CO ₂ Gas Hydrates. Journal of Physical Chemistry B, 2016, 120, 2452-2459.	2.6	65
80	Fluorescence characteristics of the fuel tracers triethylamine and trimethylamine for the investigation of fuel distribution in internal combustion engines. Applied Optics, 2016, 55, 1551.	2.1	10
81	Supercritical drying of aerogel: In situ analysis of concentration profiles inside the gel and derivation of the effective binary diffusion coefficient using Raman spectroscopy. Journal of Supercritical Fluids, 2016, 108, 1-12.	3.2	39
82	A Raman technique applicable for the analysis of the working principle of promoters and inhibitors of gas hydrate formation. Journal of Raman Spectroscopy, 2015, 46, 1145-1149.	2.5	10
83	The Effect of Ethanol Blending on Combustion and Soot Formation in an Optical DISI Engine Using High-speed Imaging. Energy Procedia, 2015, 66, 77-80.	1.8	8
84	Scale Formation and Mitigation of Mixed Salts in Horizontal Tube Falling Film Evaporators for Seawater Desalination. Heat Transfer Engineering, 2015, 36, 750-762.	1.9	18
85	Design and validation of a multimodal low-budget Raman microscope for liquid and solid phase applications. Proceedings of SPIE, 2015, , .	0.8	1
86	Potential of two-line atomic fluorescence for temperature imaging in turbulent indium-oxide-producing flames. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	4
87	Luminescence Properties of the Thermographic Phosphors Dy ³⁺ :YAG and Tm ³⁺ :YAG for the Application in High Temperature Systems. Zeitschrift Fur Physikalische Chemie, 2015, 229, 977-997.	2.8	7
88	Influence of electric fields on premixed laminar flames: Visualization of perturbations and potential for suppression of thermoacoustic oscillations. Proceedings of the Combustion Institute, 2015, 35, 3521-3528.	3.9	24
89	Temperature and water mole fraction measurements by time-domain-based supercontinuum absorption spectroscopy in a flame. Applied Physics B: Lasers and Optics, 2015, 118, 153-158.	2.2	27
90	Application of the tracer combination TEA/acetone for multi-parameter laser-induced fluorescence measurements in IC engines with exhaust gas recirculation. Proceedings of the Combustion Institute, 2015, 35, 3783-3791.	3.9	14

#	Article	IF	CITATIONS
91	Phosphor thermometry in turbulent hot gas flows applying Dy:YAG and Dy:Er:YAG particles. Measurement Science and Technology, 2015, 26, 015204.	2.6	26
92	Flame Temperature Measurements by Time-domain Based Supercontinuum Absorption Spectroscopy. Energy Procedia, 2015, 66, 129-132.	1.8	0
93	Determination of Vapor–Liquid Equilibrium Data in Microfluidic Segmented Flows at Elevated Pressures Using Raman Spectroscopy. Analytical Chemistry, 2015, 87, 8165-8172.	6.5	18
94	The effect of ethanol blending on mixture formation, combustion and soot emission studied in an optical DISI engine. Applied Energy, 2015, 156, 783-792.	10.1	60
95	Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications. Progress in Energy and Combustion Science, 2015, 51, 2-48.	31.2	295
96	One-dimensional Raman spectroscopy and shadowgraphy for the analysis of the evaporation behavior of acetone/water drops. International Journal of Heat and Mass Transfer, 2015, 89, 406-413.	4.8	12
97	Density, Surface Tension, and Kinematic Viscosity of Hydrofluoroethers HFE-7000, HFE-7100, HFE-7200, HFE-7300, and HFE-7500. Journal of Chemical & Engineering Data, 2015, 60, 3759-3765.	1.9	127
98	Deconvolution of Raman spectra for the quantification of ternary highâ€pressure phase equilibria composed of carbon dioxide, water and organic solvent. Journal of Raman Spectroscopy, 2014, 45, 246-252.	2.5	28
99	Phase-specific Raman spectroscopy for fast segmented microfluidic flows. Lab on A Chip, 2014, 14, 2910-2913.	6.0	14
100	Raman difference spectroscopy: a non-invasive method for identification of oral squamous cell carcinoma. Biomedical Optics Express, 2014, 5, 3252.	2.9	58
101	Spatially resolved flame zone classification of a flame spray nanoparticle synthesis process by combining different optical techniques. Journal of Aerosol Science, 2014, 69, 82-97.	3.8	25
102	Impact of morphological parameters onto simulated light scattering patterns. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 119, 53-66.	2.3	37
103	Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications. Optics Express, 2013, 21, 13656.	3.4	26
104	Broadband Two-Color Laser-Induced Incandescence Pyrometry Approach for Nanoparticle Characterization with Improved Sensitivity. Applied Spectroscopy, 2013, 67, 1098-1100.	2.2	3
105	Techno-economic analysis of combined concentrating solar power and desalination plant configurations in Israel and Jordan. Desalination and Water Treatment, 2012, 41, 9-25.	1.0	52
106	The General Phase Behavior of Mixtures of 1â€Alkylâ€3â€Methylimidazolium Bis[(trifluoromethyl)sulfonyl]amide Ionic Liquids with <i>n</i> â€Alkyl Alcohols. ChemPhysChem, 2012, 13, 1860-1867.	2.1	42
107	Single-shot measurement of soot aggregate sizes by wide-angle light scattering (WALS). Applied Physics B: Lasers and Optics, 2012, 106, 171-183.	2.2	50
108	Liquidâ^'Liquid Phase Behavior of Solutions of 1-Hexyl-3-methylimidazolium Bis((trifluoromethyl)sulfonyl)amide (C ₆ mimNTf ₂) in <i>n</i> Alkyl Alcohols. Journal of Chemical & Engineering Data, 2011, 56, 1330-1340.	1.9	27

#	Article	IF	CITATIONS
109	Liquid–Liquid Phase Behavior of Solutions of 1-Butyl-3-methylimidazolium Bis((trifluoromethyl)sulfonyl)amide (C ₄ mimNTf ₂) in <i>n</i> -Alkyl Alcohols. Journal of Chemical & Engineering Data, 2011, 56, 4829-4839.	1.9	26
110	ESA's Drop Tower Utilisation Activities 2000 to 2011. Microgravity Science and Technology, 2011, 23, 409-425.	1.4	11
111	Investigations on Soot Formation in Heptane Jet Diffusion Flames by Optical Techniques. Microgravity Science and Technology, 2010, 22, 499-505.	1.4	14
112	Lichtstreuung zur Online-Charakterisierung von Nanopartikeln. Chemie-Ingenieur-Technik, 2010, 82, 1408-1409.	0.8	0
113	Wide-angle light scattering (WALS) for soot aggregate characterization. Combustion and Flame, 2010, 157, 516-522.	5.2	52
114	Liquidâ~'Liquid Phase Behavior of Solutions of 1-Octyl- and 1-Decyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide (C8,10mimNTf2) in n-Alkyl Alcohols. Journal of Chemical & Engineering Data, 2010, 55, 2030-2038.	1.9	24
115	Liquidâ^'Liquid Phase Behavior of Solutions of 1-Dodecyl-3-methylimidazolium Bis((trifluoromethyl)sulfonyl)amide (C ₁₂ mimNTf ₂) in <i>n</i> Alkyl Alcohols. Journal of Chemical & Engineering Data, 2010, 55, 4195-4205.	1.9	24
116	Laserinduzierte Inkandeszenz (LII) zur Partikelgrößenbestimmung von aggregierten Rußpartikeln. Chemie-Ingenieur-Technik, 2009, 81, 803-809.	0.8	5
117	2D aggregate sizing by combining laser-induced incandescence (LII) and elastic light scattering (ELS). Applied Physics B: Lasers and Optics, 2009, 96, 583-592.	2.2	58
118	Particle diffusion in porous media investigated by dynamic light scattering. Microporous and Mesoporous Materials, 2009, 125, 63-69.	4.4	15
119	Synthesis and Characterization. Lecture Notes in Physics, 2009, , 1-82.	0.7	12
120	CO2 release in vertical tube falling film evaporators. Desalination, 2008, 222, 626-638.	8.2	4
121	Improvement in soot concentration measurements by laser-induced incandescence (LII) through a particle size correction. Combustion and Flame, 2008, 153, 650-654.	5.2	14
122	Effects of process parameters and anti-scalants on scale formation in horizontal tube falling film evaporators. Desalination, 2007, 204, 448-463.	8.2	29
123	Modeling laser-induced incandescence of soot: a summary and comparison of LII models. Applied Physics B: Lasers and Optics, 2007, 87, 503-521.	2.2	197
124	On heat conduction between laser-heated nanoparticles and a surrounding gas. Journal of Aerosol Science, 2006, 37, 1696-1716.	3.8	60
125	Laser-induced incandescence: recent trends and current questions. Applied Physics B: Lasers and Optics, 2006, 83, 333-354.	2.2	427
126	Atom optics with Bose–Einstein condensates: quantum reflection and interferometry. Journal of Physics: Conference Series, 2005, 19, 139-145.	0.4	6

#	Article	IF	CITATIONS
127	The release of CO2 in MSF and ME distillers and its use for the recarbonation of the distillate: a comparison. Desalination, 2005, 182, 99-110.	8.2	22
128	Optical diagnostics on sooting laminar diffusion flames in microgravity. Microgravity Science and Technology, 2005, 16, 333-337.	1.4	19
129	In-situ Measurement of Primary Particle Sizes during Carbon Black Production. Chemical Engineering and Technology, 2003, 26, 966-969.	1.5	18
130	Application of Laser-Induced Incandescence for the Determination of Primary Particle Sizes of Nanoparticles Demonstrated Using Carbon Blacks. Chemical Engineering and Technology, 2002, 25, 1160-1164.	1.5	17
131	Thermophysical properties of R143a (1,1,1-trifluoroethane). International Journal of Refrigeration, 2001, 24, 734-743.	3.4	10
132	Thermal Diffusivity and Sound Speed of the Refrigerant R143a (1,1,1-Trifluoroethane). International Journal of Thermophysics, 2001, 22, 1021-1033.	2.1	17
133	Thermophysical Properties of Fluids from Dynamic Light Scattering. International Journal of Thermophysics, 2001, 22, 317-338.	2.1	12
134	Thermophysical Properties of Binary and Ternary Fluid Mixtures from Dynamic Light Scattering. International Journal of Thermophysics, 2001, 22, 1349-1368.	2.1	27
135	Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII). Combustion and Flame, 2000, 120, 439-450.	5.2	111
136	Diffusion Modes of an Equimolar Methane–Ethane Mixture from Dynamic Light Scattering. International Journal of Thermophysics, 2000, 21, 603-620.	2.1	36
137	Saturated Liquid Viscosity and Surface Tension of Alternative Refrigerants. International Journal of Thermophysics, 2000, 21, 1225-1253.	2.1	73
138	Application of a New Soot Sensor for Exhaust Emission Control Based on Time Resolved Laser Induced Incandescence (TIRE-LII). , 2000, , .		25
139	Performance Characteristics of TIRE-LII Soot Diagnostics in Exhaust Gases of Diesel Engines. , 2000, , .		19
140	Simultaneous Measurement of Soot Mass Concentration and Primary Particle Size in the Exhaust of a DI Diesel Engine by Time-Resolved Laser-Induced Incandescence (TIRE-LII). , 1999, , .		36
141	Determination of several thermophysical properties of toluene using a single experimental setup. Fluid Phase Equilibria, 1999, 161, 337-351.	2.5	11
142	Title is missing!. International Journal of Thermophysics, 1999, 20, 791-803.	2.1	13
143	Die dynamische Lichtstreuung als universelle Meßtechnik zur Bestimmung von Stoffdaten am Beispiel von Toluol. Chemie-Ingenieur-Technik, 1999, 71, 257-261.	0.8	0
144	Thermal Diffusivity and Sound Velocity of Toluene Over a Wide Temperature Range. International Journal of Thermophysics, 1998, 19, 403-414.	2.1	40

#	Article	IF	CITATIONS
145	Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence. Applied Optics, 1998, 37, 5647.	2.1	127
146	Measurement of particle diffusion coefficients with high accuracy by dynamic light scattering. , 1997, , 110-112.		0
147	Light scattering by surface waves on a vertical layer of liquid toluene. Applied Optics, 1997, 36, 7615.	2.1	11
148	Viscosity of liquidn-heptane by dynamic light scattering. International Journal of Thermophysics, 1997, 18, 1339-1354.	2.1	17
149	Measurement of particle diffusion coefficients with high accuracy by dynamic light scattering. Progress in Colloid and Polymer Science, 1997, 104, 110-112.	0.5	2
150	Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII). Proceedings of the Combustion Institute, 1996, 26, 2277-2284.	0.3	77
151	Dynamic light scattering system with a novel scattering cell for the measurement of particle diffusion coefficients. Review of Scientific Instruments, 1996, 67, 3164-3169.	1.3	10
152	Korngrößenanalyse in der Prozeßmeßtechnik über die Photosedimentation. Chemie-Ingenieur-Technik, 1995, 67, 113-117.	0.8	0
153	Dynamic viscosity measurements by photon correlation spectroscopy. International Journal of Thermophysics, 1995, 16, 433-443.	2.1	20
154	Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence. Optics Letters, 1995, 20, 2342.	3.3	161
155	Spectroscopic determination of selected thermophysical properties of transparent fluids. Measurement: Journal of the International Measurement Confederation, 1994, 14, 135-145.	5.0	12
156	Determination of the dynamic viscosity of transparent fluids by using dynamic light scattering. Applied Optics, 1993, 32, 3813.	2.1	24
157	Start-up and operation of an integrated 10 MW/sub p/ thin film PV module factory. , 0, , .		0
158	Systematic Investigation of the Influence of Ethanol Blending on Sooting Combustion in DISI Engines Using High-Speed Imaging and LII. , 0, , .		14
159	CHAPTER 2. Optical Methods. , 0, , 19-74.		15
160	Commonly Asked Questions in Thermodynamics. , 0, , .		0