
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2981683/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The impact of neighborhood context on telomere length: A systematic review. Health and Place, 2022, 74, 102746.                                                                                                                                    | 3.3 | 7         |
| 2  | Acute stress reactivity and intrusive memory development: a randomized trial using an adjusted trauma film paradigm. Psychoneuroendocrinology, 2022, 139, 105686.                                                                                  | 2.7 | 4         |
| 3  | Sex-differential PTSD symptom trajectories across one year following suspected serious injury.<br>European Journal of Psychotraumatology, 2022, 13, 2031593.                                                                                       | 2.5 | 6         |
| 4  | Remodeling of the Cortical Structural Connectome in Posttraumatic Stress Disorder: Results From<br>the ENIGMA-PGC Posttraumatic Stress Disorder Consortium. Biological Psychiatry: Cognitive<br>Neuroscience and Neuroimaging, 2022, 7, 935-948.   | 1.5 | 2         |
| 5  | Assessment of brain age in posttraumatic stress disorder: Findings from the ENIGMA PTSD and brain age working groups. Brain and Behavior, 2022, 12, e2413.                                                                                         | 2.2 | 25        |
| 6  | Altered white matter microstructural organization in posttraumatic stress disorder across 3047<br>adults: results from the PGC-ENIGMA PTSD consortium. Molecular Psychiatry, 2021, 26, 4315-4330.                                                  | 7.9 | 69        |
| 7  | Efficacy of immersive PTSD treatments: A systematic review of virtual and augmented reality exposure therapy and a meta-analysis of virtual reality exposure therapy. Journal of Psychiatric Research, 2021, 143, 516-527.                         | 3.1 | 59        |
| 8  | Cortical volume abnormalities in posttraumatic stress disorder: an ENIGMA-psychiatric genomics consortium PTSD workgroup mega-analysis. Molecular Psychiatry, 2021, 26, 4331-4343.                                                                 | 7.9 | 52        |
| 9  | Dysregulated functional brain connectivity in response to acute social-evaluative stress in adolescents with PTSD symptoms. Högre Utbildning, 2021, 12, 1880727.                                                                                   | 3.0 | 7         |
| 10 | Forecasting individual risk for long-term Posttraumatic Stress Disorder in emergency medical<br>settings using biomedical data: A machine learning multicenter cohort study. Neurobiology of Stress,<br>2021, 14, 100297.                          | 4.0 | 23        |
| 11 | Ethnic discrimination and depressed mood: The role of autonomic regulation. Journal of Psychiatric Research, 2021, 144, 110-117.                                                                                                                   | 3.1 | 0         |
| 12 | Ethnic and sex differences in the association of child maltreatment and depressed mood. The HELIUS study. Child Abuse and Neglect, 2020, 99, 104239.                                                                                               | 2.6 | 10        |
| 13 | Early posttraumatic autonomic and endocrine markers to predict posttraumatic stress symptoms after a preventive intervention with oxytocin. H¶gre Utbildning, 2020, 11, 1761622.                                                                   | 3.0 | 5         |
| 14 | Help in hand after traumatic events: a randomized controlled trial in health care professionals on<br>the efficacy, usability, and user satisfaction of a self-help app to reduce trauma-related symptoms.<br>Högre Utbildning, 2020, 11, 1717155. | 3.0 | 15        |
| 15 | Associations Between Child Maltreatment, Autonomic Regulation, and Adverse Cardiovascular<br>Outcome in an Urban Population: The HELIUS Study. Frontiers in Psychiatry, 2020, 11, 69.                                                              | 2.6 | 18        |
| 16 | Cortisol awakening response over the course of humanitarian aid deployment: a prospective cohort study. H¶gre Utbildning, 2020, 11, 1816649.                                                                                                       | 3.0 | 1         |
| 17 | Trauma exposure, posttraumatic stress disorder and oxytocin: A meta-analytic investigation of<br>endogenous concentrations and receptor genotype. Neuroscience and Biobehavioral Reviews, 2019,<br>107, 560-601.                                   | 6.1 | 18        |
| 18 | Patterns of Recovery From Early Posttraumatic Stress Symptoms After a Preventive Intervention With<br>Oxytocin: Hormonal Contraception Use Is a Prognostic Factor. Biological Psychiatry, 2019, 85, e71-e73.                                       | 1.3 | 6         |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Associations Among Hair Cortisol Concentrations, Posttraumatic Stress Disorder Status, and<br>Amygdala Reactivity to Negative Affective Stimuli in Female Police Officers. Journal of Traumatic<br>Stress, 2019, 32, 238-248. | 1.8  | 18        |
| 20 | Effects of intranasal oxytocin on distraction as emotion regulation strategy in patients with post-traumatic stress disorder. European Neuropsychopharmacology, 2019, 29, 266-277.                                            | 0.7  | 27        |
| 21 | Oxytocin receptor gene methylation in male and female PTSD patients and trauma-exposed controls.<br>European Neuropsychopharmacology, 2019, 29, 147-155.                                                                      | 0.7  | 21        |
| 22 | Estimating the risk of PTSD in recent trauma survivors: results of the International Consortium to Predict PTSD (ICPP). World Psychiatry, 2019, 18, 77-87.                                                                    | 10.4 | 126       |
| 23 | Pharmacological Prevention of PTSD: Current Evidence for Clinical Practice. Psychiatric Annals, 2019, 49, 307-313.                                                                                                            | 0.1  | 6         |
| 24 | Genetic variant in CACNA1C is associated with PTSD in traumatized police officers. European Journal of Human Genetics, 2018, 26, 247-257.                                                                                     | 2.8  | 20        |
| 25 | Smaller Hippocampal Volume in Posttraumatic Stress Disorder: A Multisite ENIGMA-PGC Study:<br>Subcortical Volumetry Results From Posttraumatic Stress Disorder Consortia. Biological Psychiatry,<br>2018, 83, 244-253.        | 1.3  | 335       |
| 26 | Turning wounds into wisdom: Posttraumatic growth over the course of two types of trauma-focused psychotherapy in patients with PTSD. Journal of Affective Disorders, 2018, 227, 424-431.                                      | 4.1  | 23        |
| 27 | Neuroendocrine and neuroimmune markers in PTSD: pre-, peri- and post-trauma glucocorticoid and inflammatory dysregulation. Current Opinion in Psychology, 2017, 14, 132-137.                                                  | 4.9  | 48        |
| 28 | DHEA and DHEA-S levels in posttraumatic stress disorder: A meta-analytic review.<br>Psychoneuroendocrinology, 2017, 84, 76-82.                                                                                                | 2.7  | 32        |
| 29 | Intranasal Oxytocin to Prevent Posttraumatic Stress Disorder Symptoms: A Randomized Controlled<br>Trial in Emergency Department Patients. Biological Psychiatry, 2017, 81, 1030-1040.                                         | 1.3  | 113       |
| 30 | Longitudinal changes in glucocorticoid receptor exon 1F methylation and psychopathology after military deployment. Translational Psychiatry, 2017, 7, e1181-e1181.                                                            | 4.8  | 24        |
| 31 | Intranasal oxytocin increases neural responses to social reward in post-traumatic stress disorder.<br>Social Cognitive and Affective Neuroscience, 2017, 12, 212-223.                                                         | 3.0  | 60        |
| 32 | Decreased uncinate fasciculus tract integrity in male. Journal of Psychiatry and Neuroscience, 2017, 42, 331-342.                                                                                                             | 2.4  | 55        |
| 33 | Investigating biological traces of traumatic stress in changing societies: challenges and directions from the ESTSS Task Force on Neurobiology. Högre Utbildning, 2016, 7, 29453.                                             | 3.0  | 8         |
| 34 | ABERRANT RESTING-STATE BRAIN ACTIVITY IN POSTTRAUMATIC STRESS DISORDER: A META-ANALYSIS AND SYSTEMATIC REVIEW. Depression and Anxiety, 2016, 33, 592-605.                                                                     | 4.1  | 241       |
| 35 | Intranasal oxytocin enhances neural processing of monetary reward and loss in post-traumatic stress disorder and traumatized controls. Psychoneuroendocrinology, 2016, 66, 228-237.                                           | 2.7  | 50        |
| 36 | Effects of intranasal oxytocin on amygdala reactivity to emotional faces in recently trauma-exposed individuals. Social Cognitive and Affective Neuroscience, 2016, 11, 327-336.                                              | 3.0  | 45        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Intranasal Oxytocin Normalizes Amygdala Functional Connectivity in Posttraumatic Stress Disorder.<br>Neuropsychopharmacology, 2016, 41, 2041-2051.                                                                                      | 5.4 | 118       |
| 38 | Intranasal Oxytocin Affects Amygdala Functional Connectivity after Trauma Script-Driven Imagery in<br>Distressed Recently Trauma-Exposed Individuals. Neuropsychopharmacology, 2016, 41, 1286-1296.                                     | 5.4 | 51        |
| 39 | Intranasal Oxytocin Administration Dampens Amygdala Reactivity towards Emotional Faces in Male<br>and Female PTSD Patients. Neuropsychopharmacology, 2016, 41, 1495-1504.                                                               | 5.4 | 80        |
| 40 | Salivary Oxytocin and Vasopressin Levels in Police Officers With and Without Postâ€Traumatic Stress<br>Disorder. Journal of Neuroendocrinology, 2015, 27, 743-751.                                                                      | 2.6 | 57        |
| 41 | Early interventions: from e-health to neurobiology. Högre Utbildning, 2015, 6, 28545.                                                                                                                                                   | 3.0 | 9         |
| 42 | Cytokine production as a putative biological mechanism underlying stress sensitization in high combat exposed soldiers. Psychoneuroendocrinology, 2015, 51, 534-546.                                                                    | 2.7 | 31        |
| 43 | Reward functioning in PTSD: A systematic review exploring the mechanisms underlying anhedonia.<br>Neuroscience and Biobehavioral Reviews, 2015, 51, 189-204.                                                                            | 6.1 | 197       |
| 44 | Pre-deployment differences in glucocorticoid sensitivity of leukocytes in soldiers developing<br>symptoms of PTSD, depression or fatigue persist after return from military deployment.<br>Psychoneuroendocrinology, 2015, 51, 513-524. | 2.7 | 21        |
| 45 | Efficacy of oxytocin administration early after psychotrauma in preventing the development of PTSD: study protocol of a randomized controlled trial. BMC Psychiatry, 2014, 14, 92.                                                      | 2.6 | 47        |
| 46 | Intranasal oxytocin as strategy for medication-enhanced psychotherapy of PTSD: Salience processing and fear inhibition processes. Psychoneuroendocrinology, 2014, 40, 242-256.                                                          | 2.7 | 107       |
| 47 | Social support, oxytocin, and PTSD. Högre Utbildning, 2014, 5, 26513.                                                                                                                                                                   | 3.0 | 37        |
| 48 | The role of oxytocin in social bonding, stress regulation and mental health: An update on the<br>moderating effects of context and interindividual differences. Psychoneuroendocrinology, 2013, 38,<br>1883-1894.                       | 2.7 | 510       |
| 49 | The role of stress sensitization in progression of posttraumatic distress following deployment.<br>Social Psychiatry and Psychiatric Epidemiology, 2013, 48, 1743-1754.                                                                 | 3.1 | 47        |
| 50 | IMPACT OF IMPAIRED SLEEP ON THE DEVELOPMENT OF PTSD SYMPTOMS IN COMBAT VETERANS: A PROSPECTIVE LONGITUDINAL COHORT STUDY. Depression and Anxiety, 2013, 30, 469-474.                                                                    | 4.1 | 122       |
| 51 | Predicting PTSD: Pre-existing vulnerabilities in glucocorticoid-signaling and implications for preventive interventions. Brain, Behavior, and Immunity, 2013, 30, 12-21.                                                                | 4.1 | 107       |
| 52 | Symptom structure of PTSD: support for a hierarchical model separating core PTSD symptoms from dysphoria. Högre Utbildning, 2012, 3, .                                                                                                  | 3.0 | 15        |
| 53 | Glucocorticoid receptor number predicts increase in amygdala activity after severe stress.<br>Psychoneuroendocrinology, 2012, 37, 1837-1844.                                                                                            | 2.7 | 28        |
| 54 | Glucocorticoid sensitivity of leukocytes predicts PTSD, depressive and fatigue symptoms after military deployment: A prospective study. Psychoneuroendocrinology, 2012, 37, 1822-1836.                                                  | 2.7 | 81        |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | IL-1β reactivity and the development of severe fatigue after military deployment: a longitudinal study.<br>Journal of Neuroinflammation, 2012, 9, 205.                                                    | 7.2 | 13        |
| 56 | Protein expression profiling of inflammatory mediators in human temporal lobe epilepsy reveals co-activation of multiple chemokines and cytokines. Journal of Neuroinflammation, 2012, 9, 207.            | 7.2 | 61        |
| 57 | Glucocorticoid Receptor Pathway Components Predict Posttraumatic Stress Disorder Symptom<br>Development: A Prospective Study. Biological Psychiatry, 2012, 71, 309-316.                                   | 1.3 | 178       |
| 58 | A prospective study on personality and the cortisol awakening response to predict posttraumatic stress symptoms in response to military deployment. Journal of Psychiatric Research, 2011, 45, 713-719.   | 3.1 | 62        |
| 59 | Pre-Existing High Glucocorticoid Receptor Number Predicting Development of Posttraumatic Stress<br>Symptoms After Military Deployment. American Journal of Psychiatry, 2011, 168, 89-96.                  | 7.2 | 162       |
| 60 | Type D personality and the development of PTSD symptoms: A prospective study Journal of Abnormal Psychology, 2011, 120, 299-307.                                                                          | 1.9 | 42        |
| 61 | Cytokine Production by Leukocytes of Military Personnel with Depressive Symptoms after Deployment to a Combat-Zone: A Prospective, Longitudinal Study. PLoS ONE, 2011, 6, e29142.                         | 2.5 | 36        |
| 62 | Deployment-related severe fatigue with depressive symptoms is associated with increased glucocorticoid binding to peripheral blood mononuclear cells. Brain, Behavior, and Immunity, 2009, 23, 1132-1139. | 4.1 | 23        |
| 63 | Associations Between Child Maltreatment, Inflammation, and Comorbid Metabolic Syndrome to<br>Depressed Mood in a Multiethnic Urban Population: The HELIUS Study. Frontiers in Psychology, 0, 13, .        | 2.1 | 1         |