Jacqueline Crawley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2981546/publications.pdf Version: 2024-02-01

		9786	18130
119	24,670	73	120
papers	citations	h-index	g-index
122	122	122	19318
all docs	docs citations	times ranked	citing authors

LACOLIELINE CRAWLEY

#	Article	IF	CITATIONS
1	Sexually dimorphic neuroanatomical differences relate to ASD-relevant behavioral outcomes in a maternal autoantibody mouse model. Molecular Psychiatry, 2021, 26, 7530-7537.	7.9	12
2	Autism-specific maternal autoantibodies produce behavioral abnormalities in an endogenous antigen-driven mouse model of autism. Molecular Psychiatry, 2020, 25, 2994-3009.	7.9	42
3	Behavioral Evaluation of Angelman Syndrome Mice at Older Ages. Neuroscience, 2020, 445, 163-171.	2.3	15
4	Evaluation of a TrkB agonist on spatial and motor learning in the Ube3a mouse model of Angelman syndrome. Learning and Memory, 2020, 27, 346-354.	1.3	4
5	Transcription Factor 2I Regulates Neuronal Development via TRPC3 in 7q11.23 Disorder Models. Molecular Neurobiology, 2019, 56, 3313-3325.	4.0	13
6	Behavioral analyses of animal models of intellectual and developmental disabilities. Neurobiology of Learning and Memory, 2019, 165, 107087.	1.9	1
7	Spaced training improves learning in Ts65Dn and Ube3a mouse models of intellectual disabilities. Translational Psychiatry, 2019, 9, 166.	4.8	8
8	Rigor in science and science reporting: updated guidelines for submissions to Molecular Autism. Molecular Autism, 2019, 10, 6.	4.9	4
9	Hypothesisâ€driven investigations of diverse pharmacological targets in two mouse models of autism. Autism Research, 2019, 12, 401-421.	3.8	42
10	Rigor and reproducibility in rodent behavioral research. Neurobiology of Learning and Memory, 2019, 165, 106780.	1.9	65
11	SynDIG4/Prrt1 Is Required for Excitatory Synapse Development and Plasticity Underlying Cognitive Function. Cell Reports, 2018, 22, 2246-2253.	6.4	41
12	Touchscreen learning deficits in <i>Ube3a</i> , Ts65Dn and <i>Mecp2</i> mouse models of neurodevelopmental disorders with intellectual disabilities. Genes, Brain and Behavior, 2018, 17, e12452.	2.2	24
13	Neuregulin-2 ablation results in dopamine dysregulation and severe behavioral phenotypes relevant to psychiatric disorders. Molecular Psychiatry, 2018, 23, 1233-1243.	7.9	45
14	R-Baclofen Reverses Cognitive Deficits and Improves Social Interactions in Two Lines of 16p11.2 Deletion Mice. Neuropsychopharmacology, 2018, 43, 513-524.	5.4	75
15	Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nature Reviews Drug Discovery, 2018, 17, 280-299.	46.4	247
16	Curiosity as an approach to ethoexperimental analysis: Behavioral neuroscience as seen by students and colleagues of Bob Blanchard. Neuroscience and Biobehavioral Reviews, 2017, 76, 415-422.	6.1	5
17	Behavioral Phenotyping Assays for Genetic Mouse Models of Neurodevelopmental, Neurodegenerative, and Psychiatric Disorders. Annual Review of Animal Biosciences, 2017, 5, 371-389.	7.4	46
18	Early motor phenotype detection in a female mouse model of Rett syndrome is improved by cross-fostering. Human Molecular Genetics, 2017, 26, 1839-1854.	2.9	32

#	Article	IF	CITATIONS
19	Germline Chd8 haploinsufficiency alters brain development in mouse. Nature Neuroscience, 2017, 20, 1062-1073.	14.8	210
20	Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism. Molecular Autism, 2017, 8, 26.	4.9	135
21	Behavioral phenotypes of genetic mouse models of autism. Genes, Brain and Behavior, 2016, 15, 7-26.	2.2	137
22	Normal Performance of <i>Fmr1</i> Mice on a Touchscreen Delayed Nonmatching to Position Working Memory Task. ENeuro, 2016, 3, ENEURO.0143-15.2016.	1.9	21
23	Evaluation of the neuroactive steroid ganaxolone on social and repetitive behaviors in the BTBR mouse model of autism. Psychopharmacology, 2016, 233, 309-323.	3.1	43
24	Autism and Cancer Share Risk Genes, Pathways, and Drug Targets. Trends in Genetics, 2016, 32, 139-146.	6.7	123
25	16p11.2 Deletion mice display cognitive deficits in touchscreen learning and novelty recognition tasks. Learning and Memory, 2015, 22, 622-632.	1.3	53
26	Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. Current Topics in Behavioral Neurosciences, 2015, 28, 1-52.	1.7	100
27	Hippocampal Transcriptomic and Proteomic Alterations in the BTBR Mouse Model of Autism Spectrum Disorder. Frontiers in Physiology, 2015, 6, 324.	2.8	70
28	Behavioral and Neuroanatomical Phenotypes in Mouse Models of Autism. Neurotherapeutics, 2015, 12, 521-533.	4.4	108
29	3D visualization of the regional differences. Molecular Psychiatry, 2015, 20, 1-1.	7.9	16
30	GABAB Receptor Agonist R-Baclofen Reverses Social Deficits and Reduces Repetitive Behavior in Two Mouse Models of Autism. Neuropsychopharmacology, 2015, 40, 2228-2239.	5.4	187
31	In tribute to Bob Blanchard: Divergent behavioral phenotypes of 16p11.2 deletion mice reared in same-genotype versus mixed-genotype cages. Physiology and Behavior, 2015, 146, 16-27.	2.1	24
32	16p11.2 Deletion Syndrome Mice Display Sensory and Ultrasonic Vocalization Deficits During Social Interactions. Autism Research, 2015, 8, 507-521.	3.8	80
33	<i>Engrailed-2</i> (<i>En2</i>) deletion produces multiple neurodevelopmental defects in monoamine systems, forebrain structures and neurogenesis and behavior. Human Molecular Genetics, 2015, 24, 5805-5827.	2.9	45
34	Cognitive Abilities on Transitive Inference Using a Novel Touchscreen Technology for Mice. Cerebral Cortex, 2015, 25, 1133-1142.	2.9	39
35	Behavioral assessment of NIH Swiss mice acutely intoxicated with tetramethylenedisulfotetramine. Neurotoxicology and Teratology, 2015, 47, 36-45.	2.4	38
36	Clustering autism: using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Molecular Psychiatry, 2015, 20, 118-125.	7.9	257

#	Article	IF	CITATIONS
37	Long-term exposure to intranasal oxytocin in a mouse autism model. Translational Psychiatry, 2014, 4, e480-e480.	4.8	112
38	Chronic desipramine treatment rescues depressionâ€related, social and cognitive deficits in <i>Engrailedâ€2</i> knockout mice. Genes, Brain and Behavior, 2014, 13, 286-298.	2.2	24
39	Modeling fragile X syndrome in the <i>Fmr1</i> knockout mouse. Intractable and Rare Diseases Research, 2014, 3, 118-133.	0.9	183
40	Assessing behavioural and cognitive domains of autism spectrum disorders in rodents: current status and future perspectives. Psychopharmacology, 2014, 231, 1125-1146.	3.1	111
41	The promising trajectory of autism therapeutics discovery. Drug Discovery Today, 2014, 19, 838-844.	6.4	29
42	Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome. Cell Reports, 2014, 7, 1077-1092.	6.4	208
43	Genetic background modulates phenotypes of serotonin transporter Ala56 knock-in mice. Molecular Autism, 2013, 4, 35.	4.9	35
44	Developmental delays and reduced pup ultrasonic vocalizations but normal sociability in mice lacking the postsynaptic cell adhesion protein neuroligin2. Behavioural Brain Research, 2013, 251, 50-64.	2.2	110
45	AMPAKINE enhancement of social interaction in the BTBR mouse model of autism. Neuropharmacology, 2013, 64, 268-282.	4.1	98
46	Quantitative Trait Loci for Interhemispheric Commissure Development and Social Behaviors in the BTBR T+ tf/J Mouse Model of Autism. PLoS ONE, 2013, 8, e61829.	2.5	53
47	Male mice emit distinct ultrasonic vocalizations when the female leaves the social interaction arena. Frontiers in Behavioral Neuroscience, 2013, 7, 159.	2.0	56
48	Reduced Excitatory Neurotransmission and Mild Autism-Relevant Phenotypes in Adolescent <i>Shank3</i> Null Mutant Mice. Journal of Neuroscience, 2012, 32, 6525-6541.	3.6	342
49	Negative Allosteric Modulation of the mGluR5 Receptor Reduces Repetitive Behaviors and Rescues Social Deficits in Mouse Models of Autism. Science Translational Medicine, 2012, 4, 131ra51.	12.4	238
50	Preclinical research in Rett syndrome: setting the foundation for translational success. DMM Disease Models and Mechanisms, 2012, 5, 733-745.	2.4	183
51	Autism gene variant causes hyperserotonemia, serotonin receptor hypersensitivity, social impairment and repetitive behavior. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5469-5474.	7.1	278
52	Absence of deficits in social behaviors and ultrasonic vocalizations in later generations of mice lacking neuroligin4. Genes, Brain and Behavior, 2012, 11, 928-941.	2.2	71
53	Low sociability in BTBR T+tf/J mice is independent of partner strain. Physiology and Behavior, 2012, 107, 649-662.	2.1	100
54	Autism-Relevant Social Abnormalities and Cognitive Deficits in Engrailed-2 Knockout Mice. PLoS ONE, 2012, 7, e40914.	2.5	143

#	Article	IF	CITATIONS
55	Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature, 2012, 488, 647-651.	27.8	756
56	Dysbindin-1 modulates prefrontal cortical activity and schizophrenia-like behaviors via dopamine/D2 pathways. Molecular Psychiatry, 2012, 17, 85-98.	7.9	128
57	Translational animal models of autism and neurodevelopmental disorders. Dialogues in Clinical Neuroscience, 2012, 14, 293-305.	3.7	195
58	Automated Three hambered Social Approach Task for Mice. Current Protocols in Neuroscience, 2011, 56, Unit 8.26.	2.6	418
59	Mouse Models of Autism: Testing Hypotheses About Molecular Mechanisms. Current Topics in Behavioral Neurosciences, 2011, 7, 187-212.	1.7	51
60	Female urine-induced male mice ultrasonic vocalizations, but not scent-marking, is modulated by social experience. Behavioural Brain Research, 2011, 216, 19-28.	2.2	85
61	Reduced scent marking and ultrasonic vocalizations in the BTBR T+tf/J mouse model of autism. Genes, Brain and Behavior, 2011, 10, 35-43.	2.2	166
62	Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters. Genes, Brain and Behavior, 2011, 10, 44-56.	2.2	316
63	Sociability and motor functions in Shank1 mutant mice. Brain Research, 2011, 1380, 120-137.	2.2	206
64	Absence of preference for social novelty and increased grooming in integrin β3 knockout mice: Initial studies and future directions. Autism Research, 2011, 4, 57-67.	3.8	97
65	Communication Impairments in Mice Lacking Shank1: Reduced Levels of Ultrasonic Vocalizations and Scent Marking Behavior. PLoS ONE, 2011, 6, e20631.	2.5	196
66	Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Molecular Autism, 2010, 1, 15.	4.9	521
67	Behavioural phenotyping assays for mouse models of autism. Nature Reviews Neuroscience, 2010, 11, 490-502.	10.2	1,248
68	The Female Urine Sniffing Test: A Novel Approach for Assessing Reward-Seeking Behavior in Rodents. Biological Psychiatry, 2010, 67, 864-871.	1.3	174
69	Social deficits, stereotypy and early emergence of repetitive behavior in the C58/J inbred mouse strain. Behavioural Brain Research, 2010, 208, 178-188.	2.2	107
70	Low stress reactivity and neuroendocrine factors in the BTBR T+tf/J mouse model of autism. Neuroscience, 2010, 171, 1197-1208.	2.3	125
71	Repetitive Self-Grooming Behavior in the BTBR Mouse Model of Autism is Blocked by the mGluR5 Antagonist MPEP. Neuropsychopharmacology, 2010, 35, 976-989.	5.4	374
72	Galanin Impairs Cognitive Abilities in Rodents: Relevance to Alzheimer's Disease. Exs, 2010, 102, 133-141.	1.4	11

#	Article	IF	CITATIONS
73	Social approach in genetically engineered mouse lines relevant to autism. Genes, Brain and Behavior, 2009, 8, 129-142.	2.2	225
74	Postnatal lesion evidence against a primary role for the corpus callosum in mouse sociability. European Journal of Neuroscience, 2009, 29, 1663-1677.	2.6	104
75	Ultrasonic vocalizations: A tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neuroscience and Biobehavioral Reviews, 2009, 33, 508-515.	6.1	413
76	Simple Behavioral Assessment of Mouse Olfaction. Current Protocols in Neuroscience, 2009, 48, Unit 8.24.	2.6	401
77	Galanin – 25 years with a multitalented neuropeptide. Cellular and Molecular Life Sciences, 2008, 65, 1836-1841.	5.4	34
78	Minimal aberrant behavioral phenotypes of neuroliginâ€3 R451C knockin mice. Autism Research, 2008, 1, 147-158.	3.8	263
79	Autismâ€like behavioral phenotypes in BTBR T+tf/J mice. Genes, Brain and Behavior, 2008, 7, 152-163.	2.2	709
80	Behavioral Phenotyping Strategies for Mutant Mice. Neuron, 2008, 57, 809-818.	8.1	393
81	Olfactory cues are sufficient to elicit social approach behaviors but not social transmission of food preference in C57BL/6J mice. Behavioural Brain Research, 2008, 193, 235-242.	2.2	76
82	Development of a mouse test for repetitive, restricted behaviors: Relevance to autism. Behavioural Brain Research, 2008, 188, 178-194.	2.2	192
83	Social approach and repetitive behavior in eleven inbred mouse strains. Behavioural Brain Research, 2008, 191, 118-129.	2.2	215
84	Unusual Repertoire of Vocalizations in the BTBR T+tf/J Mouse Model of Autism. PLoS ONE, 2008, 3, e3067.	2.5	492
85	Mouse behavioral tasks relevant to autism: Phenotypes of 10 inbred strains. Behavioural Brain Research, 2007, 176, 4-20.	2.2	714
86	Social deficits in BTBR <i>T</i> + <i>tf</i> /J mice are unchanged by crossâ€fostering with C57BL/6J mothers. International Journal of Developmental Neuroscience, 2007, 25, 515-521.	1.6	124
87	Social approach behaviors are similar on conventional versus reverse lighting cycles, and in replications across cohorts, in BTBR T+ tf/J, C57BL/6J, and vasopressin receptor 1B mutant mice. Frontiers in Behavioral Neuroscience, 2007, 1, 1.	2.0	109
88	Mouse Behavioral Assays Relevant to the Symptoms of Autism*. Brain Pathology, 2007, 17, 448-459.	4.1	511
89	Galanin receptor subtype 2 (GalR2) null mutant mice display an anxiogenic-like phenotype specific to the elevated plus-maze. Pharmacology Biochemistry and Behavior, 2007, 86, 8-20.	2.9	100
90	Social approach behaviors in oxytocin knockout mice: Comparison of two independent lines tested in different laboratory environments. Neuropeptides, 2007, 41, 145-163.	2.2	204

#	Article	IF	CITATIONS
91	Mouse models of autism spectrum disorders: The challenge for behavioral genetics. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2006, 142C, 40-51.	1.6	116
92	Automated apparatus for quantitation of social approach behaviors in mice. Genes, Brain and Behavior, 2004, 3, 303-314.	2.2	680
93	Sociability and preference for social novelty in five inbred strains: an approach to assess autisticâ€like behavior in mice. Genes, Brain and Behavior, 2004, 3, 287-302.	2.2	1,241
94	Designing mouse behavioral tasks relevant to autistic-like behaviors. Mental Retardation and Developmental Disabilities Research Reviews, 2004, 10, 248-258.	3.6	439
95	Social transmission of food preference in mice: Methodology and application to galanin-overexpressing transgenic mice Behavioral Neuroscience, 2003, 117, 21-31.	1.2	99
96	Social transmission of food preference in mice: methodology and application to galanin-overexpressing transgenic mice. Behavioral Neuroscience, 2003, 117, 21-31.	1.2	53
97	Galanin peptide levels in hippocampus and cortex of galanin-overexpressing transgenic mice evaluated for cognitive performance. Neuropeptides, 2002, 36, 413-426.	2.2	26
98	Evaluation of Antidepressant-related Behavioral Responses in Mice Lacking the Serotonin Transporter. Neuropsychopharmacology, 2002, 27, 914-923.	5.4	256
99	The CCK-B Antagonist CI-988 Increases Dopamine Levels in Microdialysate from the Rat Nucleus Accumbens via a Tetrodotoxin- and Calcium-Independent Mechanism. Journal of Neurochemistry, 2002, 65, 208-217.	3.9	6
100	Neurogranin null mutant mice display performance deficits on spatial learning tasks with anxiety related components. Hippocampus, 2001, 11, 763-775.	1.9	159
101	Galanin: Neurobiologic Mechanisms and Therapeutic Potential for Alzheimer's Disease. CNS Neuroscience & Therapeutics, 2001, 7, 445-470.	4.0	45
102	Impaired Learning and Motor Behavior in Heterozygous <i>Pafah1b1 (Lis1)</i> Mutant Mice. Learning and Memory, 1999, 6, 521-537.	1.3	84
103	The role of galanin in feeding behavior. Neuropeptides, 1999, 33, 369-375.	2.2	140
104	Mesolimbic dopaminergic mechanisms underlying individual differences in sugar consumption and amphetamine hyperlocomotion in Wistar rats. European Journal of Neuroscience, 1998, 10, 1895-1902.	2.6	15
105	A Proposed Test Battery and Constellations of Specific Behavioral Paradigms to Investigate the Behavioral Phenotypes of Transgenic and Knockout Mice. Hormones and Behavior, 1997, 31, 197-211.	2.1	522
106	Social Interaction and Sensorimotor Gating Abnormalities in Mice Lacking Dvl1. Cell, 1997, 90, 895-905.	28.9	440
107	Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology, 1997, 132, 107-124.	3.1	1,283
108	Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology, 1997, 132, 169-180.	3.1	359

#	Article	IF	CITATIONS
109	Mice lacking both subunits of lysosomal β–hexosaminidase display gangliosidosis and mucopolysaccharidosis. Nature Genetics, 1996, 14, 348-352.	21.4	194
110	Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature, 1996, 383, 535-538.	27.8	482
111	Genetic analysis of anxiety-related behaviors and responses to benzodiazepine-related drugs in AXB and BXA recombinant inbred mouse strains. Behavior Genetics, 1995, 25, 557-568.	2.1	90
112	Lack of effect of chronic morphine treatment and naloxone-precipitated withdrawal on tyrosine hydroxylase, galanin, and neuropeptide Y mRNA levels in the rat locus coeruleus. Synapse, 1995, 19, 197-205.	1.2	18
113	Mouse models of Tay–Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism. Nature Genetics, 1995, 11, 170-176.	21.4	411
114	Subtype-selective cholecystokinin receptor antagonists block cholecystokinin modulation of dopamine-mediated behaviors in the rat mesolimbic pathway. Journal of Neuroscience, 1992, 12, 3380-3391.	3.6	94
115	Centrally administered cholecystokinin suppresses feeding through a peripheral-type receptor mechanism. Journal of Pharmacology and Experimental Therapeutics, 1991, 257, 1076-80.	2.5	48
116	Coexistence of Neuropeptides and "Classical" Neurotransmitters Annals of the New York Academy of Sciences, 1990, 579, 233-241.	3.8	29
117	Modulation of Mesolimbic Dopaminergic Behaviors by Cholecystokinin. Annals of the New York Academy of Sciences, 1988, 537, 380-396.	3.8	19
118	Exploratory behavior models of anxiety in mice. Neuroscience and Biobehavioral Reviews, 1985, 9, 37-44.	6.1	653
119	Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacology Biochemistry and Behavior, 1980, 13, 167-170.	2.9	1,131