
Michael H Glickman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2980475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Ubiquitin-Proteasome Proteolytic Pathway: Destruction for the Sake of Construction. Physiological Reviews, 2002, 82, 373-428.	13.1	3,696
2	A Subcomplex of the Proteasome Regulatory Particle Required for Ubiquitin-Conjugate Degradation and Related to the COP9-Signalosome and eIF3. Cell, 1998, 94, 615-623.	13.5	859
3	A gated channel into the proteasome core particle. Nature Structural Biology, 2000, 7, 1062-1067.	9.7	722
4	The base of the proteasome regulatory particle exhibits chaperone-like activity. Nature Cell Biology, 1999, 1, 221-226.	4.6	451
5	Stress-Induced Phosphorylation and Proteasomal Degradation of Mitofusin 2 Facilitates Mitochondrial Fragmentation and Apoptosis. Molecular Cell, 2012, 47, 547-557.	4.5	279
6	A Stress-Responsive System for Mitochondrial Protein Degradation. Molecular Cell, 2010, 40, 465-480.	4.5	275
7	UBQLN2 Mediates Autophagy-Independent Protein Aggregate Clearance by the Proteasome. Cell, 2016, 166, 935-949.	13.5	248
8	MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochemistry, 2002, 3, 28.	4.4	194
9	Proteasome Disassembly and Downregulation Is Correlated with Viability during Stationary Phase. Current Biology, 2003, 13, 1140-1144.	1.8	158
10	Ubiquitin–Proteasome System and mitochondria — Reciprocity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 80-87.	0.9	158
11	Reversible 26S Proteasome Disassembly upon Mitochondrial Stress. Cell Reports, 2014, 7, 1371-1380.	2.9	150
12	Complementary Roles for Rpn11 and Ubp6 in Deubiquitination and Proteolysis by the Proteasome. Journal of Biological Chemistry, 2004, 279, 1729-1738.	1.6	136
13	A Perturbed Ubiquitin Landscape Distinguishes Between Ubiquitin in Trafficking and in Proteolysis. Molecular and Cellular Proteomics, 2011, 10, M111.009753.	2.5	115
14	PCI Complexes: Beyond the Proteasome, CSN, and eIF3 Troika. Molecular Cell, 2009, 35, 260-264.	4.5	105
15	The central unit within the 19S regulatory particle of the proteasome. Nature Structural and Molecular Biology, 2008, 15, 573-580.	3.6	103
16	Rpn1 and Rpn2 Coordinate Ubiquitin Processing Factors at Proteasome. Journal of Biological Chemistry, 2012, 287, 14659-14671.	1.6	99
17	Purification of Proteasomes, Proteasome Subcomplexes, and Proteasome-Associated Proteins From Budding Yeast. , 2005, 301, 057-070.		98
18	Pathogenesis of Human Mitochondrial Diseases Is Modulated by Reduced Activity of the Ubiquitin/Proteasome System. Cell Metabolism, 2014, 19, 642-652.	7.2	98

2

MICHAEL H GLICKMAN

#	Article	IF	CITATIONS
19	Proteasome plasticity. FEBS Letters, 2005, 579, 3214-3223.	1.3	94
20	Mixed-Linkage Ubiquitin Chains Send Mixed Messages. Structure, 2013, 21, 727-740.	1.6	88
21	Extraproteasomal Rpn10 Restricts Access of the Polyubiquitin-Binding Protein Dsk2 to Proteasome. Molecular Cell, 2008, 32, 415-425.	4.5	84
22	DNA-Damage-Inducible 1 Protein (Ddi1) Contains an Uncharacteristic Ubiquitin-like Domain that Binds Ubiquitin. Structure, 2015, 23, 542-557.	1.6	71
23	COP9 signalosome components play a role in the mating pheromone response ofS. cerevisiae. EMBO Reports, 2002, 3, 1215-1221.	2.0	67
24	Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia. Redox Biology, 2021, 45, 102047.	3.9	66
25	The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag. Nature Communications, 2021, 12, 6173.	5.8	66
26	Getting in and out of the proteasome. Seminars in Cell and Developmental Biology, 2000, 11, 149-158.	2.3	62
27	The COP9 signalosome-like complex in S. cerevisiae and links to other PCI complexes. International Journal of Biochemistry and Cell Biology, 2003, 35, 706-715.	1.2	54
28	Ubiquitin Binding by a CUE Domain Regulates Ubiquitin Chain Formation by ERAD E3 Ligases. Molecular Cell, 2013, 50, 528-539.	4.5	54
29	The Proteasome and the Delicate Balance between Destruction and Rescue. PLoS Biology, 2004, 2, e13.	2.6	53
30	The Protein Quality Control Machinery Regulates Its Misassembled Proteasome Subunits. PLoS Genetics, 2015, 11, e1005178.	1.5	52
31	Synthetic Uncleavable Ubiquitinated Proteins Dissect Proteasome Deubiquitination and Degradation, and Highlight Distinctive Fate of Tetraubiquitin. Journal of the American Chemical Society, 2016, 138, 16004-16015.	6.6	50
32	Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain. Biochemical Journal, 2004, 381, 275-285.	1.7	49
33	Structural Snapshots of 26S Proteasome Reveal Tetraubiquitin-Induced Conformations. Molecular Cell, 2019, 73, 1150-1161.e6.	4.5	44
34	Recognition and Cleavage of Related to Ubiquitin 1 (Rub1) and Rub1-Ubiquitin Chains by Components of the Ubiquitin-Proteasome System. Molecular and Cellular Proteomics, 2012, 11, 1595-1611.	2.5	43
35	Disassembly of Lys11 and Mixed Linkage Polyubiquitin Conjugates Provides Insights into Function of Proteasomal Deubiquitinases Rpn11 and Ubp6. Journal of Biological Chemistry, 2015, 290, 4688-4704.	1.6	42
36	Dual function of Rpn5 in two PCI complexes, the 26S proteasome and COP9 signalosome. Molecular Biology of the Cell, 2011, 22, 911-920.	0.9	40

MICHAEL H GLICKMAN

#	Article	IF	CITATIONS
37	Proteasome in action: substrate degradation by the 26S proteasome. Biochemical Society Transactions, 2021, 49, 629-644.	1.6	40
38	Polyubiquitin-Photoactivatable Crosslinking Reagents for Mapping Ubiquitin Interactome Identify Rpn1 as a Proteasome Ubiquitin-Associating Subunit. Cell Chemical Biology, 2017, 24, 443-457.e6.	2.5	37
39	Dissection of the Carboxyl-Terminal Domain of the Proteasomal Subunit Rpn11 in Maintenance of Mitochondrial Structure and Function. Molecular Biology of the Cell, 2008, 19, 1022-1031.	0.9	36
40	Structure of ubiquitylated-Rpn10 provides insight into its autoregulation mechanism. Nature Communications, 2016, 7, 12960.	5.8	34
41	Structural Insights into Substrate Recognition and Processing by the 20S Proteasome. Biomolecules, 2021, 11, 148.	1.8	34
42	Extended ubiquitin species are protein-based DUB inhibitors. Nature Chemical Biology, 2014, 10, 664-670.	3.9	31
43	On-Demand Detachment of Succinimides on Cysteine to Facilitate (Semi)Synthesis of Challenging Proteins. Journal of the American Chemical Society, 2020, 142, 19558-19569.	6.6	28
44	Inhibition of proteasome reveals basal mitochondrial ubiquitination. Journal of Proteomics, 2020, 229, 103949.	1.2	26
45	Tuning the proteasome to brighten the end of the journey. American Journal of Physiology - Cell Physiology, 2016, 311, C793-C804.	2.1	24
46	Base-CP proteasome can serve as a platform for stepwise lid formation. Bioscience Reports, 2015, 35, .	1.1	18
47	Purification and Characterization of Proteasomes from Saccharomyces cerevisiae. Current Protocols in Protein Science, 2001, 24, Unit 21.5.	2.8	17
48	Structural Basis for the Inhibitory Effects of Ubistatins in the Ubiquitin-Proteasome Pathway. Structure, 2017, 25, 1839-1855.e11.	1.6	15
49	Synthesis and delivery of a stable phosphorylated ubiquitin probe to study ubiquitin conjugation in mitophagy. Chemical Communications, 2021, 57, 9438-9441.	2.2	15
50	Ubiquitination of Intramitochondrial Proteins: Implications for Metabolic Adaptability. Biomolecules, 2020, 10, 1559.	1.8	14
51	Coronaviral PLpro proteases and the immunomodulatory roles of conjugated versus free Interferon Stimulated Gene product-15 (ISG15). Seminars in Cell and Developmental Biology, 2022, 132, 16-26.	2.3	9
52	Studying Protein Ubiquitylation in Yeast. Methods in Molecular Biology, 2016, 1449, 117-142.	0.4	8
53	Proteasome Channel Opening as a Rate-Limiting Step in the Ubiquitin-Proteasome System. Israel Journal of Chemistry, 2006, 46, 219-224.	1.0	7
54	The Proteasome Lid Triggers COP9 Signalosome Activity during the Transition of Saccharomyces cerevisiae Cells into Quiescence. Biomolecules, 2019, 9, 449.	1.8	5