
Giorgio Lulli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2980271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-energy silicon-on-insulator ion implanted gratings for optical wafer scale testing. Proceedings of SPIE, 2011, , .	0.8	3
2	Two-Dimensional Simulation of Undermask Penetration in 4H-SiC Implanted With \$hbox{Al}^{+}\$ lons. IEEE Transactions on Electron Devices, 2011, 58, 190-194.	3.0	17
3	Germanium implanted Bragg gratings in silicon on insulator waveguides. Proceedings of SPIE, 2010, , .	0.8	4
4	Summary of "IAEA intercomparison of IBA software― Nuclear Instruments & Methods in Physics Research B, 2008, 266, 1338-1342.	1.4	69
5	Ion implantation of silicon at the nanometer scale. Journal of Applied Physics, 2007, 102, 074307.	2.5	2
6	RBS-channeling analysis of ion-irradiation effects in heavily-doped Si:As. Nuclear Instruments & Methods in Physics Research B, 2007, 257, 253-256.	1.4	1
7	International Atomic Energy Agency intercomparison of ion beam analysis software. Nuclear Instruments & Methods in Physics Research B, 2007, 262, 281-303.	1.4	84
8	Defect-induced homogeneous amorphization of silicon: the role of defect structure and population. Journal of Physics Condensed Matter, 2006, 18, 2077-2088.	1.8	6
9	Atomistic simulation of ion channeling in heavily doped Si:As. Nuclear Instruments & Methods in Physics Research B, 2005, 230, 112-117.	1.4	8
10	Channeling characterization of defects in silicon: an atomistic approach. Nuclear Instruments & Methods in Physics Research B, 2005, 230, 185-192.	1.4	15
11	Investigation of heavily damaged ion implanted Si by atomistic simulation of Rutherford backscattering channeling spectra. Nuclear Instruments & Methods in Physics Research B, 2005, 230, 613-618.	1.4	6
12	Ab initiostructures ofAsmVcomplexes and the simulation of Rutherford backscattering channeling spectra in heavily As-doped crystalline silicon. Physical Review B, 2005, 72, .	3.2	12
13	Structural characterization and modeling of damage accumulation in In implanted Si. Journal of Applied Physics, 2004, 95, 150-155.	2.5	7
14	Analysis of ion implanted silicon by RBS-channeling: influence of the damage model. Nuclear Instruments & Methods in Physics Research B, 2004, 219-220, 232-235.	1.4	3
15	Damage and recovery in doped SOI layers after high energy implantation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 114-115, 20-24.	3.5	2
16	Interpretation of ion-channeling spectra in ion-implanted Si with models of structurally relaxed point defects and clusters. Physical Review B, 2004, 69, .	3.2	11
17	RADIATION INDUCED DEFECTS IN BIPOLAR POWER TRANSISTORS: INFLUENCE OF RADIATION ENERGY. , 2004, , .		0
18	Computer simulation of ion channeling in Si containing structurally relaxed point defects. Nuclear Instruments & Methods in Physics Research B, 2003, 211, 50-54.	1.4	4

GIORGIO LULLI

#	Article	IF	CITATIONS
19	Radiation Enhanced Silicon Self-Diffusion and the Silicon Vacancy at High Temperatures. Physical Review Letters, 2003, 91, 245502.	7.8	71
20	Ion-channeling analysis of As relocation in heavily doped Si:As irradiated with high-energy ions. Journal of Applied Physics, 2003, 94, 6215-6217.	2.5	6
21	Atomistic modeling of ion channeling in Si with point defects: The role of lattice relaxation. Physical Review B, 2002, 66, .	3.2	18
22	Channeling energy loss of He2+ in Si by transmission and back-scattering measurements: Experiments and computer modeling. Nuclear Instruments & Methods in Physics Research B, 2002, 193, 103-108.	1.4	3
23	Charge states distribution of 3350 keV He ions channeled in silicon. Nuclear Instruments & Methods in Physics Research B, 2002, 193, 113-117.	1.4	6
24	Stopping power of SiO2 for 0.2–3.0 MeV He ions. Nuclear Instruments & Methods in Physics Research B, 2002, 196, 209-214.	1.4	13
25	The Monte Carlo Binary Collision Approximation Applied to the Simulation of the Ion Implantation Process in Single Crystal SiC: High Dose Effects. Materials Science Forum, 2001, 353-356, 599-602.	0.3	5
26	Low-energy recoils in crystalline silicon: Quantum simulations. Physical Review B, 2001, 63, .	3.2	21
27	The Si surface yield as a calibration standard for RBS. Nuclear Instruments & Methods in Physics Research B, 2000, 161-163, 293-296.	1.4	28
28	The minimum yield in channeling. Nuclear Instruments & Methods in Physics Research B, 2000, 164-165, 53-60.	1.4	3
29	Determination of He electronic energy loss in crystalline Si by Monte-Carlo simulation of Rutherford backscattering–channeling spectra. Nuclear Instruments & Methods in Physics Research B, 2000, 170, 1-9.	1.4	49
30	Damage profiles in high-energy As implanted Si. Journal of Applied Physics, 2000, 88, 3993.	2.5	14
31	Vacancy effects in transient diffusion of Sb induced by ion implantation of Si+ and As+ ions. Journal of Applied Physics, 2000, 87, 8461-8466.	2.5	15
32	Binary collision approximation modeling of ion-induced damage effects in crystalline 6H–SiC. Nuclear Instruments & Methods in Physics Research B, 1999, 148, 573-577.	1.4	14
33	Off-Axis Electron Holography of Nearly-Spherical Faceted Voids in Self-Annealed Implanted Silicon. Materials Characterization, 1999, 42, 241-247.	4.4	1
34	RBS-channeling analysis of virgin 6Hî—,SiC: Experiments and Monte Carlo simulations. Nuclear Instruments & Methods in Physics Research B, 1998, 136-138, 1267-1271.	1.4	7
35	Analysis of Aluminium Ion Implantation Damage into 6H-SiC Epilayers. Materials Science Forum, 1998, 264-268, 733-736.	0.3	5
36	Electron holography study of voids in self-annealed implanted silicon. Philosophical Magazine Letters, 1998, 78, 445-451.	1.2	0

GIORGIO LULLI

#	Article	IF	CITATIONS
37	Stopping and damage parameters for Monte Carlo simulation of MeV implants in crystalline Si. Journal of Applied Physics, 1997, 82, 5958-5964.	2.5	37
38	Ion implantation induced swelling in 6H-SiC. Applied Physics Letters, 1997, 70, 3425-3427.	3.3	62
39	MeV ion implantation induced damage in relaxed Si1â^'xGex. Journal of Applied Physics, 1997, 81, 2208-2218.	2.5	14
40	RBS-channeling determination of damage profiles in fully relaxed Si0.76Ge0.24 implanted with 2 MeV Si ions. Nuclear Instruments & Methods in Physics Research B, 1997, 122, 689-695.	1.4	10
41	Ion implantation induced damage in relaxed Si0.75Ge0.25. Nuclear Instruments & Methods in Physics Research B, 1996, 112, 301-304.	1.4	5
42	Damage profiles in as-implanted silicon: fluence dependence. Nuclear Instruments & Methods in Physics Research B, 1996, 112, 148-151.	1.4	5
43	Dynamic Monte Carlo simulation of nonlinear damage growth during ion implantation of crystalline silicon. Nuclear Instruments & Methods in Physics Research B, 1996, 112, 152-155.	1.4	12
44	Different methods for the determination of damage profiles in Si from RBS-channeling spectra: a comparison. Nuclear Instruments & Methods in Physics Research B, 1996, 118, 128-132.	1.4	57
45	Monte Carlo simulation of ion implantation in crystalline SiC. Nuclear Instruments & Methods in Physics Research B, 1996, 120, 147-150.	1.4	18
46	2 MeV Si ion implantation damage in relaxed Si1â^'xGex. Nuclear Instruments & Methods in Physics Research B, 1996, 120, 165-168.	1.4	3
47	Static Disorder in Si _{1-x} Ge _x Alloys and in Silicon on Insulator Structures. Materials Science Forum, 1996, 203, 217-222.	0.3	0
48	Influence of electron-beam parameters on the radiation-induced formation of graphitic onions. Ultramicroscopy, 1995, 60, 187-194.	1.9	42
49	EPR and X-ray diffraction study of damage produced by implantation of B ions (50 keV, 1 MeV) or Si ions (50 keV, 700 keV, 1.5 MeV) into silicon. Nuclear Instruments & Methods in Physics Research B, 1995, 96, 215-218.	1.4	19
50	Dynamics of void formation during implantation of Si under self-annealing conditions and their influence on dopant distribution. Nuclear Instruments & Methods in Physics Research B, 1993, 80-81, 559-563.	1.4	1
51	X-ray diffraction analysis of damage accumulation due to the nuclear energy loss of 50 keV and 1–2.2 MeV B ions implanted in silicon. Nuclear Instruments & Methods in Physics Research B, 1993, 80-81, 624-627.	1.4	14
52	Comparison of results and models of solid-phase epitaxial growth of implanted Si layers induced by electron- and ion-beam irradiation. Physical Review B, 1993, 47, 14023-14031.	3.2	16
53	Radiation damage evolution and its relation with dopant distribution during self-annealing implantation of As in silicon. Journal of Materials Research, 1992, 7, 1413-1422.	2.6	1
54	Electron spectroscopic imaging of dopant precipitation and segregation in silicon. Ultramicroscopy, 1991, 35, 265-269.	1.9	4

GIORGIO LULLI

#	Article	IF	CITATIONS
55	Characterization of defects produced during selfâ€annealing implantation of As in silicon. Journal of Applied Physics, 1990, 68, 2708-2712.	2.5	9
56	Solid-phase epitaxy of implanted silicon at liquid nitrogen and room temperature induced by electron irradiation in the electron microscope. Philosophical Magazine Letters, 1990, 61, 101-106.	1.2	23
57	Anomalous distribution of As during implantation in silicon under selfâ€annealing conditions. Journal of Applied Physics, 1989, 66, 2940-2946.	2.5	7
58	Lifetime and crystal order in annealed CZ silicon. Physica Status Solidi A, 1988, 108, 503-508.	1.7	2
59	Minority Carrier Lifetime in Furnace and Eâ€Beam Annealed CZ Silicon. Journal of the Electrochemical Society, 1987, 134, 1239-1243.	2.9	7
60	Solid-phase epitaxy of amorphous silicon induced by electron irradiation at room temperature. Physical Review B, 1987, 36, 8038-8042.	3.2	66
61	Self annealing effects in P+ implanted silicon. Nuclear Instruments & Methods in Physics Research B, 1987, 19-20, 475-479.	1.4	11
62	e-beam-induced lateral seeded epitaxy of silicon on insulator. Materials Letters, 1986, 4, 185-188.	2.6	1
63	On the Dynamic Annealing Mechanism in P+-Implanted Silicon. Physica Status Solidi A, 1986, 94, 95-106.	1.7	20
64	Dose rate effects on the dynamic annealing mechanism in P+ -implanted silicon. Physica Status Solidi A, 1986, 97, 77-85.	1.7	16
65	Transmission Electron Microscopy of Self-Annealed Ion Implanted Silicon. Japanese Journal of Applied Physics, 1985, 24, L14-L16.	1.5	14
66	Tailored emitter ion-implanted silicon solar cells. Solar Cells, 1984, 11, 69-85.	0.6	3
67	Electron beam annealing of semiconductors by means of a specifically designed electron gun. Materials Chemistry and Physics, 1983, 9, 285-294.	4.0	6
68	Comparison between electronâ€beam and furnace rapid isothermal anneals of phosphorusâ€implanted solar cells. Journal of Applied Physics, 1983, 54, 4127-4133.	2.5	3
69	RAPID ISOTHERMAL ANNEALING OF ION IMPLANTED SILICON DEVICES BY UNIFORM LARGE AREA IRRADIATION WITH A NEW ELECTRON BEAM SYSTEM. Journal De Physique Colloque, 1983, 44, C5-415-C5-419.	0.2	0
70	2D Simulation of under-Mask Penetration in 4H-SiC Implanted with Al ⁺ Ions. Materials Science Forum, 0, 679-680, 421-424.	0.3	4