
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2979956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sulfate―and ironâ€dependent anaerobic methane oxidation occurring sideâ€byâ€side in freshwater lake sediment. Limnology and Oceanography, 2022, 67, 231-246.	3.1	11
2	Oxygen and nitrogen production by an ammonia-oxidizing archaeon. Science, 2022, 375, 97-100.	12.6	91
3	Aerobic and anaerobic methane oxidation in a seasonally anoxic basin. Limnology and Oceanography, 2022, 67, 1257-1273.	3.1	8
4	Microbial bioremediation of produced water under different redox conditions in marine sediments. Water Research, 2022, 218, 118428.	11.3	3
5	Anaerobic methane oxidation in a coastal oxygen minimum zone: spatial and temporal dynamics. Environmental Microbiology, 2022, 24, 2361-2379.	3.8	5
6	Carbon fixation rates in groundwater similar to those in oligotrophic marine systems. Nature Geoscience, 2022, 15, 561-567.	12.9	28
7	Spatial variability of prokaryotic and viral abundances in the Kermadec and Atacama Trench regions. Limnology and Oceanography, 2021, 66, 2095-2109.	3.1	18
8	Coupled nitrification and N2 gas production as a cryptic process in oxic riverbeds. Nature Communications, 2021, 12, 1217.	12.8	11
9	Influence of settling organic matter quantity and quality on benthic nitrogen cycling. Limnology and Oceanography, 2021, 66, 1882-1895.	3.1	18
10	High mercury accumulation in deep-ocean hadal sediments. Scientific Reports, 2021, 11, 10970.	3.3	24
11	Sulfur cycling in oceanic oxygen minimum zones. Limnology and Oceanography, 2021, 66, 2360-2392.	3.1	34
12	Microbial community structure in hadal sediments: high similarity along trench axes and strong changes along redox gradients. ISME Journal, 2021, 15, 3455-3467.	9.8	29
13	Hadal trenches are dynamic hotspots for early diagenesis in the deep sea. Communications Earth & Environment, 2021, 2, .	6.8	49
14	Anammox bacteria drive fixed nitrogen loss in hadal trench sediments. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
15	Distinct nitrogen cycling and steep chemical gradients in <i>Trichodesmium</i> colonies. ISME Journal, 2020, 14, 399-412.	9.8	19
16	Nitrate reduction pathways and interactions with iron in the drainage water infiltration zone of a riparian wetland soil. Biogeochemistry, 2020, 150, 235-255.	3.5	15
17	Controls of H2S, Fe2 +, and Mn2 + on Microbial NO3–-Reducing Processes in Sediments of an Eutrophic Lake. Frontiers in Microbiology, 2020, 11, 1158.	3.5	23
18	Acetate-utilizing microbial communities revealed by stable-isotope probing in sediment underlying the upwelling system of the Ulleung Basin, East Sea. Marine Ecology - Progress Series, 2020, 634, 45-61.	1.9	4

#	Article	IF	CITATIONS
19	Benthic nitrogen cycling in the North Sea. Continental Shelf Research, 2019, 185, 31-36.	1.8	4
20	Impacts of typhoon-induced heavy rainfalls and resultant freshwater runoff on the partitioning of organic carbon oxidation and nutrient dynamics in the intertidal sediments of the Han River estuary, Yellow Sea. Science of the Total Environment, 2019, 691, 858-867.	8.0	16
21	Baltic Sea methanogens compete with acetogens for electrons from metallic iron. ISME Journal, 2019, 13, 3011-3023.	9.8	45
22	Extracellular Electron Uptake by Two Methanosarcina Species. Frontiers in Energy Research, 2019, 7, .	2.3	80
23	Anaerobic methane oxidation is an important sink for methane in the ocean's largest oxygen minimum zone. Limnology and Oceanography, 2019, 64, 2569-2585.	3.1	46
24	Anammox and partial nitritation in the mainstream of a wastewater treatment plant in a temperate region (Denmark). Water Science and Technology, 2019, 79, 1397-1405.	2.5	21
25	DNA- and RNA-SIP Reveal <i>Nitrospira</i> spp. as Key Drivers of Nitrification in Groundwater-Fed Biofilters. MBio, 2019, 10, .	4.1	33
26	The regulation of oxygen to low concentrations in marine oxygen-minimum zones. Journal of Marine Research, 2019, 77, 297-324.	0.3	8
27	N ₂ production through denitrification and anammox across the continental margin (shelf–slope–rise) of the Ulleung Basin, East Sea. Limnology and Oceanography, 2018, 63, S410.	3.1	13
28	Conductive Particles Enable Syntrophic Acetate Oxidation between <i>Geobacter</i> and <i>Methanosarcina</i> from Coastal Sediments. MBio, 2018, 9, .	4.1	69
29	Denitrification, anaerobic ammonium oxidation, and dissimilatory nitrate reduction to ammonium in an East African Great Lake (Lake Kivu). Limnology and Oceanography, 2018, 63, 687-701.	3.1	46
30	Effect of settled diatomâ€aggregates on benthic nitrogen cycling. Limnology and Oceanography, 2018, 63, 431-444.	3.1	11
31	Single cell genomic and transcriptomic evidence for the use of alternative nitrogen substrates by anammox bacteria. ISME Journal, 2018, 12, 2706-2722.	9.8	45
32	Freshwater copepod carcasses as pelagic microsites of dissimilatory nitrate reduction to ammonium. FEMS Microbiology Ecology, 2018, 94, .	2.7	7
33	Anaerobic methane oxidation and aerobic methane production in an east African great lake (Lake Kivu). Journal of Great Lakes Research, 2018, 44, 1183-1193.	1.9	20
34	Iron-dependent nitrogen cycling in a ferruginous lake and the nutrient status of Proterozoic oceans. Nature Geoscience, 2017, 10, 217-221.	12.9	61
35	N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone. Nature Geoscience, 2017, 10, 24-29.	12.9	180
36	Nutrient availability limits biological production in Arctic sea ice melt ponds. Polar Biology, 2017, 40, 1593-1606.	1.2	12

#	Article	IF	CITATIONS
37	The fate of nitrogen is linked to iron(II) availability in a freshwater lake sediment. Geochimica Et Cosmochimica Acta, 2017, 205, 84-99.	3.9	71
38	Novel anammox bacteria and nitrogen loss from Lake Superior. Scientific Reports, 2017, 7, 13757.	3.3	30
39	Challenges in using allylthiourea and chlorate as specific nitrification inhibitors. Chemosphere, 2017, 182, 301-305.	8.2	30
40	Metabolic potential and <i>in situ</i> activity of marine Marinimicrobia bacteria in an anoxic water column. Environmental Microbiology, 2017, 19, 4392-4416.	3.8	40
41	Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors. Water Research, 2017, 123, 429-438.	11.3	36
42	Pathways and Controls of N ₂ O Production in Nitritation–Anammox Biomass. Environmental Science & Technology, 2017, 51, 8981-8991.	10.0	59
43	Manganese and iron reduction dominate organic carbon oxidation in surface sediments of the deep Ulleung Basin, East Sea. Biogeosciences, 2017, 14, 941-958.	3.3	49
44	Metagenomic Binning Recovers a Transcriptionally Active Gammaproteobacterium Linking Methanotrophy to Partial Denitrification in an Anoxic Oxygen Minimum Zone. Frontiers in Marine Science, 2017, 4, .	2.5	44
45	Fixed-Nitrogen Loss Associated with Sinking Zooplankton Carcasses in a Coastal Oxygen Minimum Zone (Golfo Dulce, Costa Rica). Frontiers in Marine Science, 2017, 4, .	2.5	26
46	Anaerobic Methanotrophic Archaea of the ANME-2d Cluster Are Active in a Low-sulfate, Iron-rich Freshwater Sediment. Frontiers in Microbiology, 2017, 8, 619.	3.5	91
47	Nitrogen Loss from Pristine Carbonate-Rock Aquifers of the Hainich Critical Zone Exploratory (Germany) Is Primarily Driven by Chemolithoautotrophic Anammox Processes. Frontiers in Microbiology, 2017, 8, 1951.	3.5	48
48	Vertical segregation among pathways mediating nitrogen loss (N ₂ and N ₂ O) Tj ETQqO 0 4795-4813.	0,ggBT /O	verlock 10 Tf
49	The fate of fixed nitrogen in marine sediments with low organic loading: an in situ study. Biogeosciences, 2017, 14, 285-300.	3.3	33
50	Nitrogen cycling and bacterial community structure of sinking and aging diatom aggregates. Aquatic Microbial Ecology, 2017, 79, 85-99.	1.8	10
51	High Sulfur Isotope Fractionation Associated with Anaerobic Oxidation of Methane in a Low-Sulfate, Iron-Rich Environment. Frontiers in Earth Science, 2016, 4, .	1.8	28
52	Anaerobic Nitrogen Turnover by Sinking Diatom Aggregates at Varying Ambient Oxygen Levels. Frontiers in Microbiology, 2016, 7, 98.	3.5	55
53	Intracellular Nitrate of Marine Diatoms as a Driver of Anaerobic Nitrogen Cycling in Sinking Aggregates. Frontiers in Microbiology, 2016, 7, 1669.	3.5	28
54	Dissimilatory nitrate reduction to ammonium coupled to Fe(II) oxidation in sediments of a periodically hypoxic estuary. Limnology and Oceanography, 2016, 61, 365-381.	3.1	136

#	Article	IF	CITATIONS
55	Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10601-10606.	7.1	195
56	SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature, 2016, 536, 179-183.	27.8	160
57	Denitrification and DNRA at the Baltic Sea oxic-anoxic interface: Substrate spectrum and kinetics. Limnology and Oceanography, 2016, 61, 1900-1915.	3.1	60
58	lsotope fractionation and isotope decoupling during anammox and denitrification in marine sediments. Limnology and Oceanography, 2016, 61, 610-624.	3.1	23
59	A new diet for methane oxidizers. Science, 2016, 351, 658-658.	12.6	21
60	NC10 bacteria in marine oxygen minimum zones. ISME Journal, 2016, 10, 2067-2071.	9.8	112
61	Rates of N2 production and diversity and abundance of functional genes associated with denitrification and anaerobic ammonium oxidation in the sediment of the Amundsen Sea Polynya, Antarctica. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 123, 113-125.	1.4	18
62	Copepod carcasses as microbial hot spots for pelagic denitrification. Limnology and Oceanography, 2015, 60, 2026-2036.	3.1	47
63	Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA. Biogeochemistry, 2015, 126, 131-152.	3.5	33
64	Biogeochemical and metagenomic analysis of nitrite accumulation in the <scp>G</scp> ulf of <scp>M</scp> exico hypoxic zone. Limnology and Oceanography, 2015, 60, 1733-1750.	3.1	72
65	Vivianite formation and its role in phosphorus retention in Lake Ã [~] rn, Denmark. Chemical Geology, 2015, 409, 42-53.	3.3	53
66	Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME Journal, 2015, 9, 2682-2696.	9.8	169
67	Significance of archaeal nitrification in hypoxic waters of the Baltic Sea. ISME Journal, 2015, 9, 1319-1332.	9.8	67
68	Seasonal carbon cycling in a Greenlandic fjord: an integrated pelagic and benthic study. Marine Ecology - Progress Series, 2015, 539, 1-17.	1.9	28
69	Temporal dynamics of nitrogen loss in the coastal upwelling ecosystem off central Chile: Evidence of autotrophic denitrification through sulfide oxidation. Limnology and Oceanography, 2014, 59, 1865-1878.	3.1	48
70	Oxygen at Nanomolar Levels Reversibly Suppresses Process Rates and Gene Expression in Anammox and Denitrification in the Oxygen Minimum Zone off Northern Chile. MBio, 2014, 5, e01966.	4.1	216
71	Hydrogen, acetate, and lactate as electron donors for microbial manganese reduction in a manganese-rich coastal marine sediment. FEMS Microbiology Ecology, 2014, 87, 733-745.	2.7	29
72	Vertical partitioning of nitrogenâ€loss processes across the oxicâ€anoxic interface of an oceanic oxygen minimum zone. Environmental Microbiology, 2014, 16, 3041-3054.	3.8	83

#	Article	IF	CITATIONS
73	Nitrate-dependent anaerobic methane oxidation in a freshwater sediment. Geochimica Et Cosmochimica Acta, 2014, 132, 141-150.	3.9	65
74	A modelâ€based insight into the coupling of nitrogen and sulfur cycles in a coastal upwelling system. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 264-285.	3.0	22
75	Anaerobic ammonium-oxidising bacteria: A biological source of the bacteriohopanetetrol stereoisomer in marine sediments. Geochimica Et Cosmochimica Acta, 2014, 140, 50-64.	3.9	49
76	The isotope effect of denitrification in permeable sediments. Geochimica Et Cosmochimica Acta, 2014, 133, 156-167.	3.9	29
77	Nitrogen losses in anoxic marine sediments driven by Thioploca–anammox bacterial consortia. Nature, 2013, 500, 194-198.	27.8	96
78	Benthic mineralization and solute exchange on a Celtic Sea sand-bank (Jones Bank). Progress in Oceanography, 2013, 117, 64-75.	3.2	8
79	Competition for inorganic carbon between oxygenic and anoxygenic phototrophs in a hypersaline microbial mat, <scp>G</scp> uerrero <scp>N</scp> egro, <scp>M</scp> exico. Environmental Microbiology, 2013, 15, 1532-1550.	3.8	15
80	Coastal oceanic nitrogen loss. Nature Geoscience, 2013, 6, 160-161.	12.9	4
81	Identification of acetate-oxidizing bacteria in a coastal marine surface sediment by RNA-stable isotope probing in anoxic slurries and intact cores. FEMS Microbiology Ecology, 2013, 84, 373-386.	2.7	41
82	Stark Contrast in Denitrification and Anammox across the Deep Norwegian Trench in the Skagerrak. Applied and Environmental Microbiology, 2013, 79, 7381-7389.	3.1	41
83	Anaerobic oxidation of methane in an ironâ€rich Danish freshwater lake sediment. Limnology and Oceanography, 2013, 58, 546-554.	3.1	132
84	Nitrogen isotope dynamics and fractionation during sedimentary denitrification in Boknis Eck, Baltic Sea. Biogeosciences, 2013, 10, 3079-3088.	3.3	41
85	Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnology and Oceanography, 2012, 57, 1331-1346.	3.1	243
86	A critical assessment of the occurrence and extend of oxygen contamination during anaerobic incubations utilizing commercially available vials. Journal of Microbiological Methods, 2012, 88, 147-154.	1.6	59
87	Controls on Mo isotope fractionations in a Mn-rich anoxic marine sediment, Gullmar Fjord, Sweden. Chemical Geology, 2012, 296-297, 73-82.	3.3	95
88	Widespread functional anoxia in the oxygen minimum zone of the Eastern South Pacific. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 65, 36-45.	1.4	190
89	New Pathways and Processes in the Global Nitrogen Cycle. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 407-428.	8.3	256
90	Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria. ISME Journal, 2012, 6, 2078-2090.	9.8	95

#	Article	IF	CITATIONS
91	Experimental Incubations Elicit Profound Changes in Community Transcription in OMZ Bacterioplankton. PLoS ONE, 2012, 7, e37118.	2.5	79
92	Construction of STOX Oxygen Sensors and Their Application for Determination of O2 Concentrations in Oxygen Minimum Zones. Methods in Enzymology, 2011, 486, 325-341.	1.0	30
93	A Cryptic Sulfur Cycle in Oxygen-Minimum–Zone Waters off the Chilean Coast. Science, 2010, 330, 1375-1378.	12.6	545
94	Nitrogen cycling in a deep ocean margin sediment (Sagami Bay, Japan). Limnology and Oceanography, 2009, 54, 723-734.	3.1	94
95	Pathways, rates, and regulation of N2 production in the chemocline of an anoxic basin, Mariager Fjord, Denmark. Marine Chemistry, 2009, 113, 102-113.	2.3	75
96	Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off northern Chile. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 1021-1031.	1.4	105
97	Towards a consistent classification scheme for geochemical environments, or, why we wish the term â€~suboxic' would go away. Geobiology, 2009, 7, 385-392.	2.4	324
98	Determination of ultraâ€low oxygen concentrations in oxygen minimum zones by the STOX sensor. Limnology and Oceanography: Methods, 2009, 7, 371-381.	2.0	222
99	Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea. Limnology and Oceanography, 2008, 53, 23-36.	3.1	184
100	Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7104-7109.	7.1	493
101	Effects of Specific Inhibitors on Anammox and Denitrification in Marine Sediments. Applied and Environmental Microbiology, 2007, 73, 3151-3158.	3.1	113
102	A fast numerical solution to the general mass-conservation equation for solutes and solids in aquatic sediments. Journal of Marine Research, 2007, 65, 317-343.	0.3	6
103	New Players in an Ancient Cycle. Science, 2007, 317, 1508-1509.	12.6	6
104	Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environmental Microbiology, 2007, 9, 1476-1484.	3.8	307
105	ANAEROBIC AMMONIUM OXIDATION IN THE MARINE ENVIRONMENT. , 2006, , 311-335.		23
106	Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnology and Oceanography, 2006, 51, 2145-2156.	3.1	277
107	Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environmental Microbiology, 2006, 8, 1857-1863.	3.8	278
108	Nitrogen removal in marine environments: recent findings and future research challenges. Marine Chemistry, 2005, 94, 125-145.	2.3	142

#	Article	IF	CITATIONS
109	Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat. FEMS Microbiology Ecology, 2005, 52, 377-395.	2.7	29
110	34S/32S and18O/16O Fractionation During Sulfur Disproportionation byDesulfobulbus propionicus. Geomicrobiology Journal, 2005, 22, 219-226.	2.0	84
111	Preface. Advances in Marine Biology, 2005, 48, xi-xii.	1.4	44
112	Effect of Low Sulfate Concentrations on Lactate Oxidation and Isotope Fractionation during Sulfate Reduction by Archaeoglobus fulgidus Strain Z. Applied and Environmental Microbiology, 2005, 71, 3770-3777.	3.1	88
113	Composition and diagenesis of neutral carbohydrates in sediments of the Baltic-North Sea transition. Geochimica Et Cosmochimica Acta, 2005, 69, 4085-4099.	3.9	28
114	Anaerobic ammonium oxidation (anammox) in the marine environment. Research in Microbiology, 2005, 156, 457-464.	2.1	538
115	Carbon Fixation and Phototrophy. Advances in Marine Biology, 2005, 48, 95-127.	1.4	9
116	The Phosphorus Cycle. Advances in Marine Biology, 2005, 48, 419-440.	1.4	19
117	The Silicon Cycle. Advances in Marine Biology, 2005, 48, 441-463.	1.4	13
118	Structure and Growth of Microbial Populations. Advances in Marine Biology, 2005, 48, 23-64.	1.4	2
119	Thermodynamics and Microbial Metabolism. Advances in Marine Biology, 2005, 48, 65-94.	1.4	11
120	Heterotrophic Carbon Metabolism. Advances in Marine Biology, 2005, 48, 129-166.	1.4	24
121	The Nitrogen Cycle. Advances in Marine Biology, 2005, , 205-267.	1.4	14
122	The Methane Cycle. Advances in Marine Biology, 2005, 48, 383-418.	1.4	14
123	Microbial Ecosystems. Advances in Marine Biology, 2005, 48, 465-506.	1.4	2
124	Methane production by microbial mats under low sulphate concentrations. Geobiology, 2004, 2, 87-96.	2.4	55
125	Pathways of organic carbon oxidation in a deep lacustrine sediment, Lake Michigan. Limnology and Oceanography, 2004, 49, 2046-2057.	3.1	71
126	Rates and regulation of microbial iron reduction in sediments of the Baltic-North Sea transition. Biogeochemistry, 2003, 65, 295-317.	3.5	101

#	Article	IF	CITATIONS
127	Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria. Applied Microbiology and Biotechnology, 2003, 63, 107-114.	3.6	156
128	N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature, 2003, 422, 606-608.	27.8	582
129	Dynamic Modeling of Early Diagenesis and Nutrient Cycling. A Case Study in an Artic Marine Sediment. Numerische Mathematik, 2003, 303, 905-955.	1.4	149
130	Factors Controlling Anaerobic Ammonium Oxidation with Nitrite in Marine Sediments. Applied and Environmental Microbiology, 2002, 68, 3802-3808.	3.1	280
131	Production of N2 through Anaerobic Ammonium Oxidation Coupled to Nitrate Reduction in Marine Sediments. Applied and Environmental Microbiology, 2002, 68, 1312-1318.	3.1	917
132	Calibration of Sulfate Levels in the Archean Ocean. Science, 2002, 298, 2372-2374.	12.6	671
133	Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2. Geochimica Et Cosmochimica Acta, 2001, 65, 1573-1581.	3.9	128
134	Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur. Geochimica Et Cosmochimica Acta, 2001, 65, 1601-1609.	3.9	225
135	High-resolution metal gradients measured by in situ DGT/DET deployment in Black Sea sediments using an autonomous benthic lander. Limnology and Oceanography, 2001, 46, 982-988.	3.1	67
136	Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark). Marine Chemistry, 2001, 74, 29-51.	2.3	142
137	Bacterial Manganese and Iron Reduction in Aquatic Sediments. Advances in Microbial Ecology, 2000, , 41-84.	0.1	506
138	The fate of ammonium in anoxic manganese oxide-rich marine sediment. Geochimica Et Cosmochimica Acta, 2000, 64, 4157-4164.	3.9	126
139	The Archean Sulfur Cycle and the Early History of Atmospheric Oxygen. Science, 2000, 288, 658-661.	12.6	430
140	The Archean Atmosphere and Sedimentary Sulfides. Science, 2000, 289, 1297-1298.	12.6	3
141	Microbial Manganese and Sulfate Reduction in Black Sea Shelf Sediments. Applied and Environmental Microbiology, 2000, 66, 2888-2897.	3.1	161
142	Benthic Respiration in Aquatic Sediments. , 2000, , 86-103.		39
143	Benthic carbon mineralization in a high-Arctic sound (Young Sound, NE Greenland). Marine Ecology - Progress Series, 2000, 206, 59-71.	1.9	71
144	Anoxic incubation of sediment in gas-tight plastic bags: a method for biogeochemical process studies. Marine Ecology - Progress Series, 2000, 208, 273-282.	1.9	127

#	Article	IF	CITATIONS
145	The Response of the Microbial Community of Marine Sediments to Organic Carbon Input under Anaerobic Conditions. Systematic and Applied Microbiology, 1999, 22, 237-248.	2.8	89
146	Rates and pathways of carbon oxidation in permanently cold Arctic sediments. Marine Ecology - Progress Series, 1999, 180, 7-21.	1.9	119
147	Temperature dependence of aerobic respiration in a coastal sediment. FEMS Microbiology Ecology, 1998, 25, 189-200.	2.7	114
148	Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfurâ€disproportionating bacteria. Limnology and Oceanography, 1998, 43, 253-264.	3.1	148
149	Elemental Sulfur and Thiosulfate Disproportionation by <i>Desulfocapsa sulfoexigens</i> sp. nov., a New Anaerobic Bacterium Isolated from Marine Surface Sediment. Applied and Environmental Microbiology, 1998, 64, 119-125.	3.1	300
150	Temperature dependence of aerobic respiration in a coastal sediment. FEMS Microbiology Ecology, 1998, 25, 189-200.	2.7	14
151	Temperature dependence of oxygen respiration, nitrogen mineralization, and nitrification in Arctic sediments. Aquatic Microbial Ecology, 1998, 15, 191-199.	1.8	85
152	Temperature dependence of microbial degradation of organic matter in marine sediments:polysaccharide hydrolysis, oxygen consumption, and sulfate reduction. Marine Ecology - Progress Series, 1998, 165, 59-70.	1.9	160
153	Seasonal carbon and nutrient mineralization in a high-Arctic coastal marine sediment, Young Sound, Northeast Greenland. Marine Ecology - Progress Series, 1998, 175, 261-276.	1.9	164
154	Pathways of carbon oxidation in continental margin sediments off central Chile. Limnology and Oceanography, 1996, 41, 1629-1650.	3.1	292
155	Fate of elemental sulfur in an intertidal sediment. FEMS Microbiology Ecology, 1996, 19, 95-103.	2.7	83
156	Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Applied and Environmental Microbiology, 1996, 62, 1391-1404.	3.1	177
157	Distribution of bacterial populations in a stratified fjord (mariager fjord, denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Applied and Environmental Microbiology, 1996, 62, 3915-3915.	3.1	1
158	Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature, 1995, 374, 713-715.	27.8	410
159	Sulfur and iron cycling in a coastal sediment: Radiotracer studies and seasonal dynamics. Biogeochemistry, 1994, 27, 129.	3.5	101
160	Manganese oxidation and in situ manganese fluxes from a coastal sediment. Geochimica Et Cosmochimica Acta, 1994, 58, 2563-2570.	3.9	128
161	Thiosulfate and sulfite distributions in porewater of marine sediments related to manganese, iron, and sulfur geochemistry. Geochimica Et Cosmochimica Acta, 1994, 58, 67-73.	3.9	70
162	Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus bay, Denmark. Geochimica Et Cosmochimica Acta, 1994, 58, 5115-5129.	3.9	584

BO THAMDRUP

#	Article	IF	CITATIONS
163	The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science, 1994, 266, 1973-1975.	12.6	545
164	Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology, 1993, 113, 27-40.	2.1	680
165	Iron-bound phosphorus in marine sediments as measured by bicarbonate-dithionite extraction. Hydrobiologia, 1993, 253, 47-59.	2.0	213
166	The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochimica Et Cosmochimica Acta, 1993, 57, 3867-3883.	3.9	806
167	Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical Reduction of Iron or Manganese. Applied and Environmental Microbiology, 1993, 59, 101-108.	3.1	363
168	Nitrogen cycling in sub-oxic water colmns. Gayana, 0, 70, .	0.1	0